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Foreword

This book is the fourth in a series on novel low power design architectures,
methods and design practices. It results from of alarge European project started
in 1997, whose goal is to promote the further development and the faster and
wider industrial use of advanced design methods for reducing the power con-
sumption of electronic systems.

Low power design became crucial with the wide spread of portable infor-
mation and communication terminals, where a small battery has to last for a
long period. High performance electronics, in addition, suffers from a per-
manent increase of the dissipated power per square millimeter of silicon, due
to the increasing clock-rates, which causes cooling and reliability problems or
otherwise limits the performance.

The European Union’s Information Technologies Programme ’Esprit’ did
therefore launch a 'Pilot action for Low Power Design’, which eventually grew
to 19 R&D projects and one coordination project, with an overall budget of 14
million EURO. It is meanwhile known as European Low Power Initiative for
Electronic System Design (ESD-LPD) and will be completed in the year 2002.

It involves to develop or demonstrate new design methods for power reduction,
while the coordination project takes care that the methods, experiences and
results are properly documented and publicised.

The initiative addresses low power design at various levels. This includes
system and algorithmic level, instruction set processor level, custom processor
level, RT-level, gate level, circuitlevel and layout level. Itcovers datadominated
and control dominated as well as asynchronous architectures. 10 projects deal
mainly with digital, 7 with analog and mixed-signal, and 2 with software related
aspects. The principal applicationareas are communication, medical equipment
and e-commerce devices.
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The following list describes the objectives of the 20 projects. It is sorted by
decreasing funding budget.

CRAFT CMOS Radio Frequency Circuit Design for Wireless Application

= Advanced CMOS RF circuit design including blocks such as LNA,
down converter mixers & phase shifters, oscillator and frequency
synthesiser, integrated filters delta sigma conversion, power ampli-
fier

= Development of novel models for active and passive devices as well
as fine-tuning and validation based on first silicon fabricates

= Analysis and specification of sophisticated architectures to meet in
particular low power single chip implementation

PAPRICA Power and Part Count Reduction Innovative Communication Ar-
chitecture

m  Feasibility assessment of DQIF, through physical design and char-
acterisation of the core blocks

= Low-power RF designtechniquesin standard CMOS digital process
= RF design tools and framework; PAPRICA Design Kit.
m Demonstration of a practical implementation of a specific applica-
tion
MELOPAS Methodology for Low Power Asic design

= To develop a methodology to evaluate the power consumption of a
complex ASIC early on in the design flow

= To develop a hardware/software co-simulation tool
= To quickly achieve a drastic reduction on the power consumption
of electronic equipment
TARDIS Technical Coordination and Dissemination

= To organise the communication between design experiments and to
exploit their potential synergy

= To guide the capturing of methods and experiences gained in the
design experiments

= To organise and promote the wider dissemination and use of the
gathered design know-how and experience
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LUCS Low Power Ultrasound Chip Set.

= Design methodology on low power ADC, memory and circuit de-
sign
= Prototype demonstration of a handheld medical ultrasound scanner

ALPINS Analog Low Power Design for Communications Systems

= Low-voltage voice band smoothing filters and analog-to-digital and
digital-to-analog converters for an analog front-end circuit of a
DECT system

m Highlinear transconductor-capacitor (gm-C) filter for GSM Analog
Interface Circuit operating at supply voltages as low as 2.5V

» Formal verification tools, which will be implemented in the indus-
trial partners design environment. These tools support the complete
design process from system level down to transistor level

SALOMON System-level analog-digital trade-off analysis for low power

= A general top-down design flow for mixed-signal telecom ASICs

= High-level models of analog and digital blocks and power estimators
for these blocks

= A prototype implementation of the design flow with particular soft-
ware tools to demonstrate the general design flow

DESCALE Design Experiment on a Smart Card Application for Low Energy

= The application of highly innovative handshake technology

= Aiming at some 3 to 5 times less power and some 10 times smaller
peak currents compared to synchronously operated solutions

SUPREGE A low power SUPerREGEnerative transceiver for wireless data
transmission at short distances

= Design trade-offs and optimisation of the micro power receiver /
transmitter as a function of various parameters (power consumption,
area, bandwidth, sensitivity, etc)

=  Modulation / demodulation and interface with data transmission
systems

= Realisation of the integrated micro power receiver / transmitter
based on the super-regeneration principle
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PREST Power REduction for System Technologies

= Survey of contemporary Low Power Design techniques and com-
mercial power analysis software tools

= |nvestigation of architectural and algorithmic design techniques
with a power consumption comparison

= Investigation of Asynchronous design techniques and Arithmetic
styles
= Set-up and assessment of a low power design flow

m Fabrication and characterisation of a Viterbi demonstrator to assess
the most promising power reduction techniques

DABLP Low Power Exploration for Mapping DAB Applications to Multi-
Processors

= ADAB channel decoder architecture with reduced power consump-
tion

= Refined and extended ATOMIUM methodology and supporting
tools

COSAFE Low Power Hardware-Software Co-Design for Safety-Critical Ap-
plications

» The development of strategies for power efficient assignment of
safety critical mechanisms to hardware or software

m  Thedesignandimplementation of alow-power, safety-critical ASIP,
which realises the control unit of a portable infusion, pump system

AMIED Asynchronous Low-Power Methodology and Implementation of an
Encryption/Decryption System

= Implementation of the IDEA encryption/decryption method with
drastically reduced power consumption

= Advanced low power design flow with emphasis on algorithm and
architecture optimisations

» Industrial demonstration of the asynchronous design methodology
based on commercial tools
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LPGD A Low-Power Design Methodology/Flow and its Application to the
Implementation of a DCS1800-GSM/DECT Modulator/Demodulator

m To complete the development of a top-down, low power design
methodology/flow for DSP applications

= To demonstrate the methods at the example of an integrated
GFSK/GMSK Modulator-Demodulator (MODEM)
for DCS1800-GSM/DECT applications

SOFLOPO Low Power Software Development for Embedded Applications

m Developtechniquesand guidelines for mapping a specific algorithm
code onto appropriate instruction subsets

= Integrate these techniques into software for the power-conscious
ARM-RISC and DSP code optimisation

I-MODE Low Power RF to Base band Interface for Multi-Mode Portable
Phone

= Toraise the level of integration ina DECT/DCS1800 transceiver, by
implementing the necessary analog base band low-pass filters and
data converters in CMOS technology using low power techniques

COOL-LOGOS Power Reduction through the Use of Local don’t Care Con-
ditions and Global Gate Resizing Techniques: An Experimental Evalua-
tion.

= To apply the developed low power design technigues to the existing
24-bit DSP, which is already fabricated

= Toassess the merit of the new techniques using experimental silicon
through comparisons of the projected power reduction (in simula-
tion) and actually measured reduction of new DSP; assessment of
the commercial impact

LOVO Low Output VOItage DC/DC converters for low power applications

= Development of technical solutions for the power supplies of ad-
vanced low power systems, comprising the following topics

= New methods for synchronous rectification for very low output volt-
age power converters
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PCBIT Low Power ISDN Interface for Portable PC’s

= Design of a PC-Card board that implements the PCBIT interface

m Integrate levels 1 and 2 of the communication protocol in a single
ASIC

= Incorporate power management techniques in the ASIC design:

— system level: shutdown of idle modules in the circuit
— gate level: precomputation, gated-clock FSMs

COLOPODS Design of a Cochlear Hearing Aid Low-Power DSP System

= Selection of a future oriented low-power technology enabling future
power reduction through integration of analog modules

= Design of a speech processor IC yielding a power reduction of 90%
compared to the 3.3 Volt implementation



XXXi
The low power design projects have achieved the following results:

= Projects, who have designed a prototype chip, can demonstrate a power
reduction of 10 to 30 percent.

= New low power design libraries have been developed.
= New proven low power RF architectures are now available.
= New smaller and lighter mobile equipment is developed.

Instead of running a number of Esprit projects at the same time indepen-
dently of each other, during this pilot action the projects have collaborated
strongly. This is achieved mostly by the novelty of this action, which is the
presence and role of the coordinator: DIMES - the Delft Institute of Mi-
croelectronics and Submicron-technology, located in Delft, the Netherlands
(http://www.dimes.tudelft.nl). The task of the coordinator is to co-ordinate,
facilitate, and organize:

= The information exchange between projects.
= The systematic documentation of methods and experiences.
= The publication and the wider dissemination to the public.

The most important achievements, credited to the presence of the coordinator
are:

= New personnel contacts have been made, and as a consequence the result-
ing synergy between partners resulted in better and faster developments.

= The organization of low power design workshops, special sessions at
conferences, and a low power design web site,
http://mww.esdlpd.dimes.tudelft.nl. At this site all public reports of the
projects can be found and all kind of information about the initiative
itself.

m  The used design methodology, design methods and/or design experience
are disclosed, are well documented and available.

Based on the work of the projects, in cooperation with the projects, the
publication of a low power design book series is planned. Written by
members of the projects this series of books on low power design will
disseminate novel design methodologies and design experiences, which
were obtained during the runtime of the European Low Power Initiative
for Electronic System Design, to the general public.
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In conclusion, the major contribution of this project cluster is that, except the
already mentioned technical achievements, the introduction of novel knowledge
on low power design methods into the mainstream development processes is
accelerated.

We would like to thank all project partners from all the different companies
and organizations who make the Low Power Initiative a success.

Rene van Leuken, Reinder Nouta, Alexander de Graaf, Delft, May 2002



Introduction

Modern electronic systems have reached a significant turning point in the last
decade, from low performance products such as wristwatches and calculators
to high performance products such as laptops and personal digital assistants.
The introduction of these devices to the consumer market raised to the surface
a characteristic that had been previously omitted. This was low power dissipa-
tion. Gradually, engineers invented novel techniques, which may be included
in efficient design methodologies, for designing and implementing efficient cir-
cuits not only in terms of area and performance, as they were used to, but in the
term of low power consumption.

The material in this book is based on the background and the innovative re-
sults of the different partners involved inthe AMIED, LPGD, PREST, COSAFE,
and LUCS projects of the European Low Power Initiative for Electronic Sys-
tem Design under the successful coordination of DIMES, Delft. The partners
have been studying for many years low-power design field introducing novel
concepts and efficient technigues. Due to close collaboration of academic and
industrial research groups the presented material have been influenced by the
plethora of disseminations e.g. public deliverables, technical meetings, work-
shops, during the projects execution.

The book consists of two parts: The first part includes the low power de-
sign techniques for power optimization and estimation, while the second one
provides the results from the projects COSAFE and LUCS. Starting from the
description of the power consumption sources, low power optimization and es-
timation techniques for logic design level, circuit/transistor design level, and
layout design level are provided in eight chapters (i.e. Chapters 2-9). The
next two chapters describe the novel low power techniques, which were used
during the implementation of the safety-critical Application Specific Instruc-
tion Processor designed in COSAFE project, and the implementation of the
low power 16-channel ultrasound beamformer application specific integrated
circuit (ASIC) designed for LUCS project.
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A top-down approach with respect to the design level is adopted in the pre-
sentation of the low power design techniques . However,it was not possible to
present in detail manner all the low power optimization and estimation tech-
nigues from the logic level to the layout level. Only the mostimportant research
contributions presented in a tutorial manner, are included. The book can also
be used as a textbook for undergraduate and graduate students, VLSI design
engineers,and professionals, who have had a basic knowledge of VLSI digital
design.

The authors of the chapters of this book together with the editors would
like to use this opportunity to thank the many people, i.e. colleagues and Ph.D.
students, whose dedicationand industry during the projects execution lead to the
introduction of novel scientific results and realization of innovative integrated
systems.

The authors of Chapter 3 and 9 would like to thank Dr. S. Theoharis for his
contribution in the software development of logic optimization and estimation
tools, which were necessary for making power measurements.

The authors of Chapter 6 wish to acknowledge the discussions with Dr.
Karagianni, who significantly influenced the particular chapter. Also the au-
thors appreciate the financial support from the "C. Caratheodory’s" fund for the
University of Patras.

The authors of Chapter 10 would like to thank V. Spiliotopoulos for his
support in the designing and realization of the COSAFE ASIP. Also, many
thanks to V. Kokkinos for his contribution in the implementation of the many
fault-secure multiplier designs.

All authors of this book together with the editors would like to thank DIMES,
Delft, for their continuous support during the running of the low power projects
for the dissemination of the scientific results. This book is one of the activities
of this dissemination task.

The authors of Chapter 4 would like to thank the people, who contributed
to PREST, whose public deliverable reports used as an inspiration source for
chapter’s preparation.

Last but not least, D. Soudris would like to thank his parents for being a
constant source of moral support and for firmly imbibing into him from a very
young age thgberseverantia omnia vincitit is this perseverance that kept him
going. This book is dedicated to them.

Dimitrios Soudris, Christian Piguet, Costas Goutis, May 2002
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Abstract

Keywords:

Animportantissuein thedesignof VLSI Circuitsis thechoiceof thebasiccircuit

approachandtopologyfor implementingvariouslogic andarithmeticfunctions
suchasaddersaandmultipliers. In thischapterseveralstaticanddynamicCMOS

circuit designstylesareevaluatedn termsof area propagatiordelayandpower

dissipation. The differentdesignstylesare comparedby performingdetailed
transistoflevel simulationson a benchmarkeircuit (ripple carry adder)using

HSPICE,and analyzingthe resultsin a statisticalway. After the comparison
betweenthe different designstyles,a numberof well known typesof adders
(ripplecarry, carryskip,carrylookaheadcarryselectetc.) arecomparedn terms
of propagationdelay numberof gatesand logic transitions averagenumber

Furthermorepowermeasuremenendcomparisongor anumberof well-known

multipliers areprovided. Basedon the resultsof the provided analysissomeof

the tradeofs that are possibleduring the designphasein orderto improve the

circuit power-delayproductareidentified.

circuit designtechniguesgircuit macroblocksadderscgircuit styles



72 DESIGNINGCMOSCIRCUITSFORLOW POWER

51 Intr oduction

Muchof theresearclefforts of the pastyearsin theareaof digital electronics
hasbeendirectedtowardsincreasingthe speedof digital systems.Recently
the requiremenbf portability andthe moderateémprovementin batteryper
formanceindicatethatthe power dissipationis oneof the mostcritical design
parameter§l]. Thethreemostwidely acceptednetricsto measureghe qual-
ity of acircuit or to comparevariouscircuit stylesarearea,delayandpower
dissipation. Portabilityimposesa strict limitation on power dissipatiorwhile
still demanddigh computationabpeeds.Hence,in recentVLSI systemghe
power-delayproductbecomeghe mostessentiametric of performance.

The reductionof the power dissipationandthe improvementof the speed
require optimizationsat all levels of the designprocedure. In this chapter
the propercircuit style and methodologyis considered. Since, most digital
circuitry is composedf simpleand/orcomplex gateswe studythe bestway
to implementadderdn orderto achiare low power dissipationandhigh speed.
Sereralcircuit designtechniguesarecomparedn orderto find their efficiency
in terms of speedand power dissipation. A review of the existing CMOS
circuit designstylesis given,describingtheir advantagesandtheir limitations.
Furthermorea four-bit ripple carry adderfor useasa benchmarlcircuit was
designedin a full-custom mannerby using the different designstyles, and
detailedtransistoflevel simulationsusingHSPICE[2] wereperformed.Also,
variousdesignsand implementationf four multipliers are analysedn the
termsof delayandpower consumption.Two waysof pover measurementare
used.

CorventionalstaticCMOShasbeenatechniqueof choicein mostprocessor
design.Alternatively, staticpasgransistorcircuitshave alsobeensuggesteétbr
low-powerapplicationg3]. Dynamiccircuits,whenclockedcarefully canalso
be usedin low-power, high speedsystemd4]. However, several otherdesign
techniqueseedto be appliedandevaluatedalongwith thesecircuit stylesin
orderto improve the speedandreducethe power dissipationof VLSI systems.
In this chaptemwe studyeightdifferentCMOS logic styles:

m CornventionalStaticCMOS- CSL,

s Complementaryass-transistor CPL [5],

m  DoublePass-transistor DPL [6],

m StaticandDynamicDifferentialCascod@&/oltageSwitch- DCVSL[7,8],
m StaticDifferentialSplit-level - SDSL[9],

s Dual-RailDomino- DRDL[10,11],and

= Enable/disable€MOS Differential- ECDL [12].
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Therestof the chapteris structuredasfollows. In the next sectiona brief
introductiorof thepowerdissipationandthedelayin CMOScircuitsisgiven In
section3, the CMOS adderlogic stylesandtheir characteristicaredescribed
in details. The differentadderlogic stylesare comparedn termsof speed,
power dissipatiorandsiliconarea,n sectiord. Also, thepower-delayproduct
of the designsis considereddueto the importanceof this metricin modern
VLSI applications. Comparisomesultsamongdifferentrealizationof a 16-bit
adderin termsof area,delay andpower arepresentedn Section6. The next
sectionprovidesresultsfor four implementation®f multipliers. Finally, the
mainpointsaresummarizedn Section7 of conclusions.

5.2 Power and Delay in CMOS Cir cuits

Sincetheobjectiveistoinvedigatethetradeoffs thatarepossble atthecircuit
levelin orderto reducepower dissipationwhile maintainingthe overall system
throughputwe mustfirst studytheparameterthataffectthe power dissipation
andthe speedof a circuit. It is well known that one of the major advantage
of CMOS circuits over single polarity MOS circuits, is that the static power
dissipatioris very smallandlimited to leakage However, in somecasesuchas
biascircuitry andpseudo-nMO3ogic, staticpower is dissipated Considering
thatin CMOS circuits the leakagecurrentbetweenthe diffusion regionsand
the substratas negligible, the two major sourcesof power dissipationarethe
switchingandthe short-circuitpower dissipation1],

P=p;CLVyf + IscVaa, (5.1)

wherep; is the nodetransitionactvity factoy C7, is theload capacitancelyg
is the supply voltagef is the switching frequeng. I,. is the currentwhich
ariseswhena direct pathfrom power supplyto groundis causedfor a short
period of time during low to high or high to low nodetransitions[13]. The
switching componenbf power ariseswhenenepy is dravn from the power
supplyto chage parasiticcapacitorslt is thedominantpower componentn a
well designedtircuit andit canbeloweredby reducingoneor moreof py, Cr.,
Vaq and f, while retainingtherequiredspeedandfunctionality

Eventhoughthe exact analysisof circuit delayis quite comple, a simple
first-orderdervationcanbeused14,15]in orderto shaw its dependengcof the
circuit parameters

CrLVaa
K (Vaa — Vi)™’
whereK depend®nthetransistoraspectatio(W/L) andotherdevice param-

eters,Vry is thetransistorthresholdvoltage,and « is the velocity saturation
index which variesbetweenl and2 (« is equalto 1.4 for the 1.5um process

Ty (5.2)
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technologywhich is usedin the experimentsof the next section). Sincea
guadratidmprovementin power dissipationmay be obtainedby lowering the
supplyvoltage(equation(5.1)), mary researcherbave investigatedheeffects
of lowering the supplyvoltagein VLSI circuits. Unfortunately reducingthe
supplyvoltagereducegpower, but thedelayincreasegequation(5.2))with the
effectbeingmoredrasticat voltagescloseto thethresholdvoltage[16]. Equa-
tions (5.1) and(5.2) indicatethat by reducingthe nodeparasiticcapacitance
in a CMOS circuit, the power dissipationis reducedandthe circuit speedis
increased.

5.3 CMOS Cir cuit DesignStyles

In the following, the circuit designstylesaredescribedusingthe full adder
circuit, which is the mostcommonlyusedcell in arithmeticunits. Also, their
characteristicin termsof power dissipationanddelayareinvestigated.

5.3.1 Conventional Static CMOS Logic - CSL

CorventionalStaticCMOS logic is usedin mostchip designsn therecent
VLSI applications. The schematicdiagramof a corventional static CMOS
full addercell is illustratedin Figure5.1. The signalsnotedwith “-" arethe
complementarysignals. The pMOSFET network of eachstageis the dual
network of the NMOSFETone. In orderto obtaina reasonableonducting
currentto drive capacitve loadsthewidth of thetransistorsnustbeincreased.
Thisresultsn increasednputcapacitancandthereforehighpowerdissipation
andpropagatiordelay
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Figure5.1. CornventionalstaticCMOSfull adder
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5.3.2  Complementary Pass-Tansistor Logic - CPL

ThemainconcepthehindCPL [5] is the useof only annMOSFETnetwork
for theimplementatiorof logic functions. Thisresultsin low inputcapacitance
andhigh speedperation.Theschematialiagramof the CPL full addercircuit
is shavn in Figure5.2. Becausédhe high voltagelevel of the pass-transistor
outputsis lower thanthe supplyvoltagelevel by the thresholdvoltageof the
passtransistorsthe signalshave to be amplified by using CMOS invertersat
the outputs.CPL circuitsconsumdesspower thancorventionalstaticcircuits
becaus¢helogic swingof thepasdransistoroutputsis smallerthanthe supply
voltagelevel. Theswitchingpower dissipatedrom chaging or dischagingthe
pasdransistoroutputsis givenby

Pp = Vdd szing Cnode fa (5-3)

whereViying = Vag — Vinn. In the caseof conventionalstaticCMOS circuits
thevoltageswingattheoutputnodeds equalto thesupplyvoltage resultingin
higherpower dissipation.To minimize the staticcurrentdueto theincomplete
turn-off of the pMOSFETin the outputinverters,aweakpMOSFETfeedback
device canalsobeaddedn the CPL circuitsof Figure5.2,in orderto pull the
pass-transistavutputsto full supplyvoltagelevel. However, thiswill increase
theoutputnodecapacitancdeadingto higherswitchingpower dissipatiorand
higherpropagatiordelay
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Figure5.2. Complementarpass-transistdull adder
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5.3.3  Double Pass-Transistor Logic - DPL

DPL [6] is amodifiedversionof CPL. The circuit diagramof the DPL full
adderis givenin Figure5.3. In DPL circuitsfull-swing operatioris achieredby
simplyaddingpMOSFETtransistorsn parallelwith thenMOSFETtransistors.
Hence theproblemsof noisemaigin andspeeddegradationat reducedsupply
voltageswvhicharecausedn CPL circuitsdueto thereducedighvoltagelevel,
areavoided. However, the additionof pMOSFETsresultsin increasednput
capacitances.
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Figure5.3. Doublepass-transistdull adder

5.3.4  Static Differ ential CascodeVoltage Switch Logic -
SDCVSL

StaticDCVSL [7], is adifferentialstyleof logic requiringbothtrueandcom-
plementansignalgo beroutedto gates.Figure5.4shavsthecircuit diagramof
the staticDCVSL full adder Two complementaryyMOSFETswitchingtrees
areconstructedo apair of cross-couplegMOSFETtransistors Dependingn
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the differentialinputsone of the outputsis pulled down by the corresponding
NMOSFETnetwork. Thedifferentialoutputis thenlatchedby thecross-coupled
pMOSFETtransistors Sincetheinputsdrive only thenMOSFETtransistorof
theswitchingtreestheinputcapacitancés typically two or threetimessmaller
thanthatof the corventionalstaticCMOS logic.

Figure5.4. Staticdifferentialcascodevoltageswitchfull adder

5.3.5  Static Differ ential Split-level Logic - SDSL

A variationof the differentiallogic describedabore is the StaticDSL [9].
The SDSL full addercircuit diagramis illustratedin Figure5.5. Two nMOS-
FET transistorswith their gatesconnectedo a referencevoltage (V. =
(Vaa/2) + Vin, Vinn: NMOSFETthresholdvoltage)are addedto reducethe
logic swingattheoutputnodes.Theoutputnodesareclampedatthehalf of the
supplyvoltagelevel. Thus,the circuit operationbecomedasterthanstandard
DCVSL circuits. However, dueto theincompleteurn-of of thecross-coupled
pMOSFETtransistors SDSL circuits dissipatehigh static power dissipation.
Also, the addition of two extra nMOSFETtransistorger gateresultsin area
overhead.
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Figure5.5. Staticdifferentialsplit-level full adder

5.3.6  Dual-Rail Domino Logic - DRDL

Dual-Rail Domino Logic [10,11] is a prechaged circuit techniquewhich
is usedto improve the speedof CMOS circuits. Figure 5.6 shawvs a Dual-
Rail Domino full addercell. A domino gate consistsof a dynamicCMOS
circuit followed by a static CMOS buffer. The dynamiccircuit consistsof a
pMOSFET prechage transistorand an nMOSFET evaluationtransistorwith
the clock signal (CLK) appliedto their gatenodes,andan nMOSFET logic
block which implementsthe requiredlogic function. During the prechage
phase(CLK = 0) the outputnode of the dynamiccircuit is chagedthrough
the prechagedpMOSFETtransistorto the supplyvoltagelevel. The outputof
the static buffer is dischagedto ground. During the evaluationphase(CLK
= 1) the evaluationnMOSFET transistoris ON, and dependingon the logic
performedby the nMOSFET logic block, the output of the dynamiccircuit
is eitherdischagedor it will stayprechaged. Sincein dynamiclogic every
outputnodemustbe prechagedevery clock cycle, somenodesareprechaged
only to be immediatelydischaged againasthe nodeis evaluated,leadingto
higherswitchingpower dissipation[1]. Onemajoradwantageof thedynamic,
prechageddesignstylesoverthestaticstylesis thatthey eliminatethespurious
transitionsandthe correspondingower dissipation.Also, dynamiclogic does
notsuffersfrom short-circuitcurrentsvhichflow in staticcircuitswhenadirect
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pathfrom power supplyto groundis caused.However, in dynamiccircuits,
additionalpoweris dissipatedy thedistribution network andthedriversof the
clock signal.

Figure5.6. Dual-raildominofull adder

5.3.7 Dynamic Differ ential CascodéVoltage Switch Logic
- DDCVSL

DynamicDCVSL [8], is a combinationbetweenthe dominologic andthe
staticDCVSL. Thecircuit diagramof thedynamicDCVSL full adderis given
in Figure5.7. The advantageof this style over dominologic is the ability to
generatary logic function. Dominologic canonly generat@onirvertedforms
of logic. For example,in the designof aripple carryaddey two cells mustbe
designedor the carry propagationpnefor the true carry signaland another
for the complementarpne(in Figure5.6, the cell for the true carry signalis
only shavn, but the onefor the complementargignalis alsorequired).Using
DCVSL to designdynamiccircuitswill eliminatep-logic gatesbecaus®f the
inherentavailability of complementargignals.Thep-logic gatesusuallycause
long delaytimesandconsumedarge areas.
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Figure5.7. Dynamicdifferentialcascodevoltageswitchfull adder

5.3.8  Enable/disabledCMOS Differ ential Logic- ECDL

ECDL [12] is a self-timeddifferential logic which is usedin the caseof
implementinglogic functionsusingiterative networks. It usesextra signalsto
indicatethebeginningandendingof afunctionevaluation,in orderto improve
thecircuit speed.The structureof the ECDL full adderis illustratedin Figure
5.8. ThesignalsDong _ 1 andDong aretheinputandoutputsef-timing control
signals. During the disabledstate,Dong_1 hasa value of logic one,which
dischagesboththetrue andthe complementarputputsto logic zero. During
the enabledstate,Dong _1 changego logic zeroandthe topmostpMOSFET
transistor(Figure5.8) is ON to provide power to the invertersbelon. Then,
dependingnthelogic of thedifferentiainMOSFETnetwork, apathexistsfrom
oneof theoutputnodego ground holdingthatnodeto groundwhile leaving the
otheroutputnodeto bedrivento logic one. Onemajoradvantageof the ECDL
circuitsis thatthereis nominimumclockingfrequeng requirementHowever,
ECDL circuits suffer from extra power dissipationdueto the inverterswhich
are neededio changethe polarity of the outputnodes. Also, their comple
pull-up circuitry leadsin extra silicon area.
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Figure5.8. Enable/DisableeMOSdifferentialfull adder

54 Power, Delay and AreaComparisonsof a 4-Bit Ripple
Carry Adder

Theexperimentalesultsdescribedn thissectionwereobtainedisingafour-
bit ripple carry adder A generalblock diagramof the adderis illustratedin
Figure5.9.
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Figure5.9. Block diagramof thefour-bit ripple carryadder
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The circuit wasdesignedn a full custommannerfor all the designstyles
describedn the previous section,usinga 1.50um CMOS procesgechnology
Thechannelvidth of thetransistorsvas4.8um for thenMOSFETsand9.6um
for thepMOSFETs.Thedesignwasbasedon the full addercells presentedn
Figuresb.1t05.8.

Figure5.10shaws the layout of the conventionalstaticfour-bit ripple carry
adder asanexampleof thedesignectircuits.

Figure5.10. Layoutof thecorventionalstaticfour-bit ripple carryadder

In Table5.1 the addersilicon areaandthe numberof the transistordor each
designstylearegiven. Althoughno extensve attemptaveremadeto minimize
area,the numberspresentedirea goodindicationof the relative areasof the
eightadderimplementationsyhich accounnotonly for thetransistorsbut for
theinterconnectiongaswell. For example,eventhoughDPL adderhasfewer
transistorghanthe CSL one,it haslongerinterconnectionsyhich s reflected
by its large area. Dynamicdesignstylesandstyleswhich usescontrol signals
(suchasECDL) occupy extraareafor therouting of the clock andthe control
signals. The smallestareais occupiedby the CPL circuit, which hasfewer
transistorandshorterinterconnectionshanthe otheradderimplementations.

After the designof the layouts, circuit equivalentswere extractedfor a
detailedcircuit simulationusing HSPICE[2] to obtainthe power and delay
measurementsin our experiments,a supply voltage of 5Volts is used. All
measurementsereobtainedwith eachinputsuppliedthroughadriver consist-
ing of two minimum-sizednvertersin series,andeachoutputnodedriving a
minimum-sizednverterload.

Theestimationof power dissipatioris adifficult problembecausef its data
dependeng andhasreceved a lot of attention[17]. Somedirect simulatve
power estimatiormethodshave beenproposed18,19], whichareexpensiein
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Table5.1. Areaandnumberof transistorof thefour-bit ripple carryadderimplementations

DesignStyle Adder Area(x10! pm?) No. of Transistors

CSL 5.42 144
CPL 4.46 88
DPL 6.52 136
SDCVSL 5.19 114
SDSL 6.39 130
DRDL 6.48 146
DDCVSL 7.22 154
ECDL 7.65 166

termsof time. Also, several powver estimationmethodshave beenproposed,
wherepossibilitiesareusedto sdvethepatterndependence problem. However,
in orderto achieve goodaccurag, thespatialandtemporakorrelationdetween
internalnodesshouldbe modeled[20,21]. An alternatve way is the useof
statisticalmethodq22,23,17] ,thatcombinegheaccurayg of simulation-based
techniquesvith the speedf probabilisticapproaches.

In this chapterthestatisticalapproactproposedy Burchetal. [22] isused
in orderto estimatehepowerdissipatiorof ourdesigns.Usingthepowermeter
sub-circuitproposedoy Kang [18], HSPICEcanmeasurdhe averagepower
consumedy a circuit given a setof input transitionsanda time interval. In
themethod theinputsarerandomlygeneratedndstatisticalmeanestimation
techniquesare usedto determinethe final result. In our casefor eachadder
designwe use200 independentpseudorandonmput transitionsamplesand
the power consumedor eachsampleis monitoredby HSPICE.AlI

simulationswerecarriedout at 27°C,with aninput frequeng of 50MHzin
orderto accommodatéhe slowvestadder The power dissipationmeasuresio
notincludethepowverconsumedy thedriversandtheloads.In Figure5.11,the
probabilitydistributionsof thepower dissipationperadditionderivedfrom the
measurements$or the eightadderimplementationsareshavn. Sincethedata
inputsareindependentpower canbe approximatedo be normally distributed
[22]. Thisconclusioncanalsobeextractedfrom the curvesof Figure5.11.

Hencethe meanpower dissipationis givenby

— S
P £ t,h—, 5.4
a/2\/Jv ( )
whereP is thesampleaverage s is the standardieviation, N is the numberof
samplesandt, /, is obtainedrom the¢—distribution for a (1-a)% confidence
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intenal [24]. Themeanpower dissipationof the eightadderimplementations
usingthe simulationresultsandthe equation(4) is givenin Table5.2.

Thenumberof therequiredsampless extractedusingthe stoppingcriterion
[22] of theabove method

ta/2 S
P+/N
wheree is thedesiredpercentagerrorin the power estimate.Theerrorin our
statisticalpoweranalysifor N=200and95%confidencentenal (t, ;= 1.96)
is lessthan7%. In Table5.2,the percentagerrorfor eachadderdesignis also

given. For the four last designsthe error is quite small becauseof the high
normality of their distributionswhich leadsto smallstandardieviation.
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Figure5.11. Powerdissipationhistograms
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Thedelayof eachdesignwasmeasuredlirectly from the outputwaveforms
generatedby simulatingtheadderusingHSPICEfor theworstcasenputs,that
is, inputswhichcausdhecarryto ripplefrom theleastsignificantbit positionto
mostsignificantbit position. The worstcasedelaysof the eightadderdesigns
arelisted in the fourth column of Table5.2. As mentionedin Section5.1,
the mostessentiametric of performancan modernVLSI applicationss the
power-delayproduct. By multiplying eachpowver measuremenwith theworst
casedelay we canfoundthe meanpower-delayproductof thedesignausinga
methodsimilar to thatusedfor the meanpower dissipation.Hence the mean
power-delayproductis givenby

_ S
P xD &+ ta/2\/—N’ (56)
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Figure5.12. Pawver-delayproducthistograms

whereP x D is the sampleaveragepower-delayproduct. The meanpower-
delayproductvaluesof the eightadderdesignsarelistedin Table5.2,andthe
probability distributions of the power-delayproductareshovn in Figure5.12.



86 DESIGNINGCMOSCIRCUITSFORLOW POWER

Table5.2. Powerdissipationdelayandpower-delayproductof thefour- bit ripple carryadder
implementations

Adder Mean Power Statist. Worst Case Mean Power-
Design Dissipationper Error Delay(nse¢ DelayProductper
Style addition (mW) (%) addition (pJ

CSL 0.4224+ 0.0302 6.1 6.125 2.585+ 0.1850
CPL 0.238+ 0.0208 4.8 4.042 0.962+ 0.0841
DPL 0.305+ 0.0263 6.9 3.345 1.020+ 0.0879
SDCVSL 0.432+0.0362 6.5 7.986 3.450+ 0.2891
SDSL 2.383+ 0.0129 0.6 4.606 10.9764+ 0.0594
DRDL 0.641+0.0091 1.4 2.909 1.865+ 0.0265
DDCVSL 0.957+0.0074 0.8 3.453 3.304+ 0.0255
ECDL 1.721+ 0.0096 0.6 2.892 4977+ 0.0278

As we canseein the probability distributions of Figure5.12,the curvesof
the dynamicdesigng DRDL and DDCVSL) are shiftedto the right, because
of the power dissipateddueto the prechage cycles. The samephenomenon
occursin theECDL adderueto thepower dissipatiorof its disabledstate. The
shiftingto theright of theSDSLaddercurweis causedecausef thehighstatic
power which is dissipateddueto the incompleteturn-of of the cross-coupled
pMOSFETtransistors.The otherstaticdesignstylesaremorepower efficient
comparedo the dynamiccircuits.

ThestaticDCVSL circuit consumesnorepower thanthe corventionalstatic
circuit dueto thedifferenceof the chaging anddischaging timesof its output
nodes. Theasymmetnyin therise andfall timesof the potentialat theseout-
put nodeswill prolongthe periodof currentflow throughthelatchduringthe
transientstate thusincreasinghe power dissipation.

It canbe obtainedfrom the resultsof Table 5.2, thatthe dynamiccircuits
exhibit anincreasén speedccomparedo the conventionalstaticcircuit. Com-
paringthe dynamiclogic styles,Dominologic hasbetterpower-delayproduct
characteristicfFigure5.12). Thecircuitoperatiorin theSDSLcircuitbecomes
fasterthanthe standardsDCVSL circuit, dueto thereducedogic swingatthe
outputnodes put in the costof high staticpower dissipation.ECDL circuit is
the fasterone,but consumeshigh switchingpower dueto the inverterswhich
areneededo changethe polarity of the outputs.

Thedesignstyleswhichusepass-transistdogic (CPLandDPL) arethebest
in termsof powerdissipation.CPL circuit consumesower powerthanthe DPL
one,becausef its lower parasiticcapacitanceOnthecontrary DPL circuitis
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fasterthanthe CPL, becauséhe additionof pMOSFETtransistordn parallel
with thenMOSFETtransistorgesultsin highercircuit drivability. Also, DPL
avoidsthe problemsof noisemangin andspeeddegradationat reducedsupply
voltageswhich are causedn CPL circuits. As shawvn in Figure5.12andin
Table5.2, the two stylesexhibit similar pover-delay productcharacteristics,
andthey arethe mostefficientfor low-power andhigh-speedipplications.

The meanpower dissipationandthe propagatiordelayvaluesof the eight
adderimplementationsresummarizedn Figure5.13. Thefastaddercircuits
lie to theleft of thefigure, andthosewith low power consumptiorlie toward
the bottomof thefigure.
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Figure5.13. Pawer dissipationversusdelayof theadderimplementations

55 Adders

In staticCMOSthe dynamicpower dissipationof a circuit dependgprimary
on the numberof transitionsperunit area. As aresult,the averagenumberof
logic transitiongperadditioncansene asthe basisof comparingheefficiengy
of avariety of adderdesigns.If two addersrequireroughly the sameamount
of time androughlythe samenumberof gatesthecircuit whichrequiresewer
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logic transitionds moredesirablaasit will requirelessdynamicpower. Thisis
only afirst orderapproximatiorasthe power alsodepend®n switchingspeed,
gatesize,fan-out,outputloadinge.t.c.

Thefollowing typesof adderaveresimulated:RippleCarry, ConstanBlock
Width Single-lerel Carry Skip, VariableBlock Width Multi-level Carry skip,
CarryLookaheadCarry Select,and ConditionalSum. Table 5.3 presentghe
worstcasenumberof gatedelays thenumberof gatesandtheaveragenumber
of logic transitionsfor the six 16-bitaddertypes. All the gatesareassumedo
have the samedelay regardlessf thefan-inor fan-out.

Table5.3. WorstCaseDelay Numberof Gates andAverageNumberof Logic Transitionsfor
a16-bitAdder

Adder Type Worst Case Number of AverageNumber
Delay (in Gates of logic Transi-
gatesunits) tions

Ripple Carry 36 144 90

Constant Block 23 156 102

Width  Single-level

Carry Skip

Variable Block 17 170 108

Width  Multi-level

Carryskip

CarryLookahead 10 200 100

CarrySelect 14 284 161

ConditionalSum 12 368 218

5.6 Multipliers

The majority of thereallife applicationssuchasmicroprocessoranddig-
ital processingmplementationssequirethe computatiorof the multiplication
operation. Specifically speed.areaand power efficient implementatiorof a
multiplier is averychallengingoroblem.Here,four well-known multipliers: i)
the Array Multiplier [25], ii) the Split Array Multiplier [26], iii) WallaceTree
Multiplier [27] andiv) the Radix-4 Modified Booth RecodedwWallace Tree
Multipliers [28], arestudiedin termsof power consumption.

Two kindsof measurementndcomparisonn thetermsof differentdesign
parameterareperformedoroviding to thedesigneaplethoraof alternatve im-
plementationsParticularly we provide SPICE-like measurementsith respect
to theaveragdogic transitionsaswell asthe power consumption.The second
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kind of measurementare performedfollowing a typical high-level analysis
flow andis basedn a state-of-the-ar€AD framework.

5.6.1  SPICE-like Power Measurementsof Multipliers

The multipliers weredescribedusingonly AND, OR, andINVERT gates.
Thesimulationwasmadeusinga programcalledCazM[29], whichis similar
to SPICE.Eachmultiplier wasfed with 1.000pseudorandonmputs. For the
sale of completenesghe carry save array multiplier andthe Wallacetreeis
presentedh thefollowing section,in orderto briefly describehearchitectures
of the mostcommonmultipliers. The formeris a representate paradigmof
array multipliers, while the Wallacetree is an efficient way to add multiple
partialproductstogether

A gatelevel simulationwith 10.000pseudorandorimputs,enabledhegath-
eringof averagenumberof gate-outputransitionsfor eachmultiplier. During
eachinput, the numberof gatesthat switch outputstatesis recordedandan
averagenumberof gate-outputransitionsper multiplication are computedat
the endof the simulation. Table5.4 presentsheresults.

Table5.4. AverageNumberof Gate-Outpuflransistions

AverageNumber of Gate-Output Transitions

Multiplier Type 8-bit 16-hbit 32-bit
Array 570 7224 99906
Split array 569 4874 52221
Wallace 549 3793 20055
Modified booth 964 3993 19542

The averagepower dissipationper multiplication is shavn in Table 5.5.
Theseresultswereobtainedby simulatingthe multiplication of 1000pseudo-
randominputswith a clock periodof 100 ns. The resultsvary significantly
The Wallacemultiplier, which presentshelower power dissipationjs neither
thesmallesinor the slowestone.

5.6.2 High-Level Power Characterization of Multipliers

Thesecondowerestimatiorproceduresiillustratedin Figure5.14. Thefirst
stepisthelogic synthesi®f theparameterizedndstructuraMHDL description
of the arithmeticmodules. Here, a 0.6-micronprocess AMS standard-cell
library hasbeenused. For power characterizationpnly the dynamicpower
dissipationwhich formsthe dominantcomponenbf the total power, is taken
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Table5.5. AvaragePower Dissipationfrom CAzM

Multiplier Type  Power (mW) Logic Transitions
Array 43.5 7224
Split array 38.0 4874
Wallace 32.0 3793
Modified booth 41.3 3993

into accouny30]. Specifically the actiity pernode,resultingvia logic-level
simulationthattakesplacein a secondstep,is combinedwith the capacitance
pernode,to computethe power for a certaininput vector accordingto

N
Power = Cloaa; Viy | Ei (5.7)
i=1
whereCj,q4; IS the capacitancat nodes, Vyqis the power supplyvoltage, fis
thefrequeng and E;is the actiity factoratnodei. Thetermf - E; of Eq. 5.7
is actuallythe numberof transitiondrom logic ‘1’ to logic ‘0O’ pertime unit for
thenodei, whichis equalto theratio of numberof nodetransitionsfrom logic
‘1’ tologic ‘0", dividedby thetotal numberof input vectors:

trans )
[ Ei=fiso= #iransi, (5.8)
#vectors
FromEq. 5.7and5.8,the poweris:
V2
Power = —2— E Cload; #transi_o, (5.9)

#vectors

Following this procedure the power estimationerrorsarein the rangeof
10-25%[31], comparedwith SPICEtransistoflevel simulator However, the
accurag of the estimatessufices for the purposeof comparingalternatve
modulearchitecturessinceits relative evaluationis of importanceandnotthe
absoluteaccurag. The 8-bit wide input modulesweresimulatedwith 50.000
randomvectors,the 16-bit moduleswith 100.000vectors,the 32-bit modules
with 150.000randomvectors,andthe 64-bit moduleswith 200.000vectors. It
shouldbestressetier,tha theenergyfigures,givenlaterin thecharacterization
sectionsof the arithmeticcomponentscorrespondo the averageenegy per
operation.Thedifferenceof thetwo characterizatioprocedurein thenumber
of testvectorsis significant.Inthis section power measure$or thesynthesized
multipliers, namelythe carry save array the Booth encodedNallacetreeand
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thenon-BoothencodedVallacetree will bepresentedyhile analysiof results
andcomparisonsvith previouswork aremade.

Table5.6 presentghe power estimationof the synthesizednultipliers. The
measurementsf power are normalizedby frequeng, reflectingthe fact of
simulation,with differentoperatingfrequencies.In this way, a representate
powermeasurds given,for everykind of multiplier andfor everybit width. As
it isshavn in Table5.6,themostpower-efficientmultiplier for smallbit-widths
(lessthan32bits) is thecarrysave array but with asmalldifference compared
to the Wallacetreewith non-Boothencoding.In the 64-bitimplementations,
theWallacetreewith non-Boothencodingnultiplier is themostpower efficient
choice. Thisfactis explainedby theglitchesarisingfrom theripple of carriesof
thearraymultiplier for large bit-widths. Finally, for all bit-widths,the Wallace
treewith Boothencodingmultiplier hastheworstpower dissipation.

Table5.6. Pawerdissipationestimates

Power (mW)
Multiplier Type/ 8-bit 16-bit 32-bit 64-bit
Multiplier Width
Carry Save Array 0.3084 2.2484 3.057023 20.96759
WallaceTree 0.7868 3.1204 5.384 23.7164
(BoothEncoded)
WallaceTree 0.5488 2.5992 4.2212 18.8588
(Non BoothEncoded)

For comparisorpurposesTable5.7shavs theresultspresentedh [29], con-
sidering16-bitimplementation®f arrayandWallacetree multipliers. These
designsveredescribednly by AND, OR,andINVERT gates.Theimplemen-
tation technologywas a 2-level metal 2-um process. It canbe seenthatthe
arraymultiplier consumesnoreenegy thanthe Wallacetreemultiplier, which
is contradictoryto correspondingaluesshavn in Table5.6. Only in the 64-bit
case thearraymultiplier consumesnoreenegy thanthe Wallacetree multi-
plier. Thereasorfor thisis the spurioustransitionsthatoccurby therippling
of carriesfor the arraymultiplier of the 64-bit implementationwhich cannot
compensattheinterconnectrea/capacitancavitchedoy thearraymultiplier.
For theremainingcasesthefactorsof thegreatetinterconnecaindcell areafor
the Wallacemultiplier dominatethe power performanceof thesetwo kinds of
multipliers.
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Table5.7. 16-bitMultiplier AveragePawver Dissipation[29]

Multiplier Power (mW) Logic transitions
Carry Save Array 43.5 7224
WallaceTree 32 3793

TheWallacemultiplierwith Booth encadingdisspaesthemos power, while
it is notthelargest. It is thefastesmultiplier for bit-widthslargerthan16 bits
andcanbeassumedhatBoothencodings a ratherpowerhungryoperation.

Finally, Table 5.8 depictsthe PowerxDelay product of the multipliers at
1MHz frequeng. More specifically the carry save array multiplier exhibits
the worst productfor all bit-widths, exceptthe 8-bit, dueto the large delay
andthe substantiapower consumptionAlthoughthe non-BoothWallacetree
multiplier is the largest, it shavs the best PowerxDelay product for every
bit-width. Wherespeeds of greatinterest,especiallyif large bit widths are
required,andchip areais not a problem,the non-BoothencodedNallacetree
multiplier is the bestcandidatdor selection.

Table5.8. Pawer-Delayproductof Multipliers at LMHz

Power*Delay (mW*ns)

Multiplier Type/ 8-bit 16-hbit 32-bit 64-bit
Multiplier Width

Carry Save Array 4,13256 53,51192 141,9987 2090,049
WallaceTree 4,980444 25,96173 58,09336 312,345
(BoothEncoded)

WallaceTree 3,172064 19,8059 44,95578 251,9536
(NonBoothEncoded)

5.7 Conclusions

In this chapterthe mostcommonkindsof addersandmultipliershave been
characterizeth termsof power, usingeitheratraditionallow-level designflow
paradigmwhichis rathertediousandincompatiblewith moderndesignflows,
but providesthe mostaccurateresults,or a high-level designflow paradigm,
whichis commonlyused.
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A four-bit ripple carryaddemwasused asthebenchmaricircuit. All thecir-
cuitshave beerdesigredin afull-cusommamer, andsimulatedusingHSPICE.
A statisticalapproachwasusedin orderto analyzethe simulationresults. It
hasbeenshavn thatthecircuitswhichusepass-transistdogic (CPLandDPL)
exhibit betterpower andthe power-delay productcharacteristiccomparedo
otherdesignstyles.

The arraymultiplier is power-efficient for smallbit widths. Its power con-
sumptiongrows in proportionto the cubeof the word size. The Wallacemul-
tiplier is lessregular, but is more power efficient, while its power dissipation
grows with the squareof theword size.

The speedof the synthesizedptimizedcarry look-aheads traded-of for
theworstenegy power consumptioramongall theinvestigatecadderswhich
have beensynthesizedAs opposedo the speedoptimizedarchitectureof the
carrylook-aheadddeyanon-optimizedarchitectures power-efficient, though
muchslower. Paver-efficientis theripple carryaddeytoo.
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