

João M.P. Cardoso  ●  Michael Hübner
Editors

Reconfigurable Computing

From FPGAs to
Hardware/Software Codesign

Editors
João M.P. Cardoso
Departamento de Engenharia Informática
Faculdade de Engenharia (FEUP)
Universidade do Porto
Rua Dr. Roberto Frias, s/n,
4200–465 Porto, Portugal
jmpc@acm.org

Michael Hübner
Institut für Technik der
Informationsverarbeitung, Fakultät für
Elektrotechnik und Informationstechnik
Karlsruher Institut für Technologie (KIT)
Kaiserstr. 12
Karlsruhe, Germany
michael.huebner@kit.edu

ISBN 978-1-4614-0060-8 e-ISBN 978-1-4614-0061-5
DOI 10.1007/978-1-4614-0061-5
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011933471

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

v

Preface

Dr. Panagiotis Tsarchopoulos

The objective of the European research programme in Information and
Communication Technologies (ICT) is to improve the competitiveness of European
industry and enable Europe to master and shape future developments in ICT.
ICT is at the very core of the knowledge based society. EU research funding has as
target to strengthen Europe’s scientific and technology base and to ensure European
leadership in ICT, help drive and stimulate product, service and process innovation
and creativity through ICT use and value creation in Europe, and ensure that ICT
progress is rapidly transformed into benefits for Europe’s citizens, businesses,
industry and governments.

Over the past years, the European Commission has constantly increased the
amount of funding going to research in computing architectures and tools through
the European research programme in Information and Communication Technologies.
In this context, the European Commission has funded a number of European
research projects in the area of reconfigurable computing. Results from these
projects are being presented in this book providing a valuable reference point, which
describes the efforts of several international research teams.

Reconfigurable Computing is a fascinating alternative to mainstream computing.
But is it always going to remain just an alternative occupying a market niche? The
potential for reconfigurable computing has not yet been fully unleashed although
there have been notable successes – mostly for ‘fine-grain’ reconfigurability.
Now there are technological developments and market opportunities that suggest
breakthroughs in the future for coarse-grain reconfigurability – a field in which
Europe has particular strengths. As a matter of fact, the ‘coarse-grain’ market is
showing increasing potential. Tile-based architectures, for example, offer a balance
of flexibility and ease of programming, drawing on libraries of pre-defined func-
tionality. Europe has a considerable track-record in research into coarse-grained
reconfigurability, and this offers a re-entry route for Europe into the Reconfigurable
Computing market, based upon an integrated approach of hardware together with
development systems for specific application domains.

vi Preface

In reconfigurable computing, one important observation – that is also becoming
reality in mainstream computing with the advent of multicore architectures – is that
parallelism is omnipresent. Most reconfigurable computing exploits the potential for
parallel processing as much as possible using different “flavours” of parallelism.
The exploding interest in parallelism presents another opportunity for reconfigurable
computing.

If it is to be effective, any European strategy for RTD in Reconfigurable
Computing must be set in the context of its potential use by applications developers
and systems designers. It must take account of the market – the market for supply of
Reconfigurable Computing technologies; the evolution of the general purpose
computing market; and the markets of the users. And for embedded systems appli-
cations, it must also take account of the evolution of the methodologies ad require-
ments of the users. Technology is not enough.

The markets for Reconfigurable Computing may be divided into two – High
Performance Computing and Embedded Systems. These markets – and the techno-
logical solutions appropriate to them – are quite different. However, they share one
very important property: the fundamental obstacle to take-up of Reconfigurable
Computing is the difficulty of programming. While localised solutions might be
devised for specific technologies, such solutions are generally not viable, given their
limited markets.

The highest priority need for RTD is therefore to enable commercially viable
programmability of Reconfigurable Computing technology. This requires coherent,
integrated (or “integrable”) suites of processes, methods and tools spanning:

application level support for reconfigurability that supplements existing design •	
methodologies, including support for verification and validation of reconfigu-
rable behaviour and reconfigurability properties of the system so as to satisfy
qualification requirements;
mapping from the output of application design to reconfigurable hardware via •	
intermediate layer(s) of abstraction with standard libraries of functions based
on open and widely accepted standards; and
run-time support for reconfiguration, typically through OS extensions for •	
resource allocation, scheduling, and discovery; debugging and monitoring; and
fast re-layout of reconfigurable units.

Future European RTD in these topics must recognise the need for compatibility
with development paradigms and processes, methods and tools in the applications
sectors. Indeed, RTD in Reconfigurable Computing should be application-driven.
Application sectors where Europe could gain particular advantage include embedded
healthcare, (multi)physical system modeling, biomedical, cognitive radio, portable
consumer devices, automotive/avionics, infotainment, and user-driven reconfigu-
rable products.

The book that you have in your hands will give you a glimpse of the future:
research results that will be coming out of labs towards market introduction; unre-
solved issues and new research challenges that need to be solved; relentless efforts

viiPreface

to produce the last missing piece of magic that will make everything work…. but
above all, I am sure, you will feel the enthusiasm and passion of the researchers
and engineers that make all this happen.

Dr. Panagiotis Tsarchopoulos
ICT Research Programme

European Commission

Disclaimer: The views expressed are those of the author and do not necessarily
represent the official view of the European Commission on the subject.

ix

Contents

  1  Introduction..	 1
João M.P. Cardoso and Michael Hübner

  2  The Relevance of Reconfigurable Computing.......................................	 7
Reiner Hartenstein

  3  HiPEAC: Upcoming Challenges
in Reconfigurable Computing...	 35
Ioannis Sourdis and Georgi N. Gaydadjiev

  4  MORPHEUS: Exploitation of Reconfiguration
for Increased Run-Time Flexibility and Self-Adaptive
Capabilities in Future SoCs..	 53
Arnaud Grasset, Paul Brelet, Philippe Millet, Philippe Bonnot,
Fabio Campi, Nikolaos S. Voros, Michael Hübner, Matthias Kühnle,
Florian Thoma, Wolfram Putzke-Roeming, and Axel Schneider

  5  hArtes: Holistic Approach to Reconfigurable
Real-Time Embedded Systems...	 91
Georgi Kuzmanov, Vlad Mihai Sima, Koen Bertels,
José Gabriel F. de Coutinho, Wayne Luk, Giacomo Marchiori,
Raffaele Tripiccione, and Fabrizio Ferrandi

  6  Smart Chips for Smart Surroundings – 4S...	 117
Eberhard Schüler, Ralf König, Jürgen Becker,
Gerard Rauwerda, Marcel van de Burgwal, and Gerard SmitJ.M.

x Contents

  7  AETHER: Self-Adaptive Networked Entities: Autonomous
Computing Elements for Future Pervasive Applications
and Technologies..	 149
Christian Gamrat, Jean-Marc Philippe, Chris Jesshope,
Alex Shafarenko, Labros Bisdounis, Umberto Bondi,
Alberto Ferrante, Joan Cabestany, Michael Hübner,
Juha Pärsinnen, Jiri Kadlec, Martin Danek, Benoit Tain,
Susan Eisenbach, Michel Auguin, Jean-Philippe Diguet,
Eric Lenormand, and Jean-Luc Roux

  8  ANDRES – Analysis and Design of Run-Time
Reconfigurable, Heterogeneous Systems...	 185
Kim Grüttner, Philipp A. Hartmann,
Andreas Herrholz, and Frank Oppenheimer

  9  CRISP: Cutting Edge Reconfigurable ICs
for Stream Processing..	 211
Tapani Ahonen, Timon D. ter Braak, Stephen T. Burgess,
Richard Geißler, Paul M. Heysters, Heikki Hurskainen,
Hans G. Kerkhoff, André B.J. Kokkeler, Jari Nurmi,
Jussi Raasakka, Gerard K. Rauwerda, Gerard J.M. Smit,
Kim Sunesen, Henk van Zonneveld, Bart Vermeulen,
and Xiao Zhang

10  ERA – Embedded Reconfigurable Architectures.................................	 239
Stephan Wong, Luigi Carro, Mateus Rutzig,
Debora Motta Matos, Roberto Giorgi, Nikola Puzovic,
Stefanos Kaxiras, Marcelo Cintra, Giuseppe Desoli,
Paolo Gai, Sally A. Mckee, and Ayal Zaks

11  REFLECT: Rendering FPGAs to Multi-core
Embedded Computing...	 261
João M.P. Cardoso, Pedro C. Diniz, Zlatko Petrov,
Koen Bertels, Michael Hübner, Hans van Someren,
Fernando Gonçalves, José Gabriel F. de Coutinho,
George A. Constantinides, Bryan Olivier, Wayne Luk,
Juergen Becker, Georgi Kuzmanov, Florian Thoma,
Lars Braun, Matthias Kühnle, Razvan Nane,
Vlad Mihai Sima, Kamil Krátký, José Carlos Alves,
and João Canas Ferreira

12  Conclusion..	 291
João M.P. Cardoso and Michael Hübner

Index..	 293

xi

Contributors

Tapani Ahonen  Tampere University of Technology, Tampere, Finland

José Carlos Alves  Departamento de Engenharia Electrótecnica, Faculdade de
Engenharia (FEUP), Universidade do Porto, Porto, Portugal

Michel Auguin  CNRS, Orsay, France

Juergen Becker  Institut fur Technik der Informationsverarbeitung, Fakultat fur
Elektrotechnik und Informationstechnik, Karlsruhe Institute für Technology, Karlsruhe,
Germany

Jürgen Becker  Institut für Technik in der Informationsverarbeitung (ITIV),
Karlsruhe Institute of Technology KIT, Karlsruhe, Germany

Koen Bertels  Computer Engineering Lab, Faculty Electrical Engineering,
Mathematics and Computer Science, Technische Universiteit Delft, TUD, Delft,
The Netherlands

Labros Bisdounis  INTRACOM, Athens, Greece, (currently: T.E.I. of Patras, Greece)

Umberto Bondi  Università della Svizzera italiana, Lugano, Switzerland

Philippe Bonnot  Thales Research & Technology, Paris, France

Timon D. ter Braak  University of Twente, Enschede, The Netherlands

Lars Braun  Institut für Technik der Informationsverarbeitung, Fakultät für
Elektrotechnik und Informationstechnik, Karlsruher Institut für Technologie, (KIT),
Karlsruhe, Germany

Paul Brelet  Thales Research & Technology, Paris, France

Stephen T. Burgess  Tampere University of Technology, Tampere, Finland

Marcel van de Burgwal  University of Twente, Computer Science, Enschede,
The Netherlands

xii Contributors

Joan Cabestany  Universitat Politècnica de Catalunya, Catalonia, Spain

Fabio Campi  STMicroelectronics SRL, Agrate Brianza, Italy

João M.P. Cardoso  Departamento de Engenharia Informática, Faculdade de
Engenharia (FEUP), Universidade do Porto, Porto, Portugal

Luigi Carro  Universidade do Rio Grande do Sul, Passo Fundo, Brazil

Marcelo Cintra  University of Edinburgh, Edinburgh, UK

George A. Constantinides  Department of Electrical & Electronic Engineering,
Imperial College London, London, UK

José Gabriel F. de Coutinho  Department of Computing,
Imperial College London, London, UK

Martin Danek  UTIA AV CR, Ostrava, Czech Republic

Giuseppe Desoli  ST Microelectronics, Agrate Brianza, Italy

Jean-Philippe Diguet  CNRS, Orsay, France

Pedro C. Diniz  Electronic Systems Design and Automation Research Group,
INESC-ID, Lisboa, Portugal

Susan Eisenbach  Imperial College, London, UK

Fabrizio Ferrandi  Dipartimento di Elettronica e Informazione
Politechnico di Milano, Milano, Italy

Alberto Ferrante  Università della Svizzera italiana, Lugano, Switzerland

João Canas Ferreira  Departamento de Engenharia Electrótecnica,
Faculdade de Engenharia (FEUP), Universidade do Porto, Porto, Portugal

Paolo Gai  Evidence, Edinburgh, Italy

Christian Gamrat  CEA, LIST, Centre de Saclay - Point Courrier 94,
Gif sur Yvette Cedex, France

Georgi N. Gaydadjiev  Computer Engineering, TU Delft, The Netherlands

Richard Geißler  Atmel Automotive GmbH, Heilbronn, Germany

Roberto Giorgi  Universita’ degli Studi di Siena, Siena, Italy

Fernando Gonçalves  Coreworks – Projectos de Circuitos e Sistemas
Electrónicos S.A., CW, Porto, Lisboa, Portugal

Kim Grüttner  OFFIS – Institute for Information Technology, Oldenburg,
Germany

Arnaud Grasset  Thales Research & Technology Campus Polytechnique1,
Palaiseau Cedex, France

Reiner Hartenstein  Fachbereich Informatik,
Technische Universität Kaiserslautern, Baden-Baden, Germany

Philipp A. Hartmann  OFFIS – Institute for Information Technology, Oldenburg,
Germany

Andreas Herrholz  OFFIS – Institute for Information Technology, Oldenburg,
Germany

Paul M. Heysters  Recore Systems, Enschede, The Netherlands

Michael Hübner  Institut für Technik der Informationsverarbeitung,
Fakultät für Elektrotechnik und Informationstechnik, Karlsruher Institut für
Technologie (KIT), Karlsruhe, Germany

Heikki Hurskainen  Tampere University of Technology, Tampere, Finland

Chris Jesshope  University of Amsterdam, Amsterdam, The Netherlands

Jiri Kadlec  UTIA AV CR, Ostrava, Czech Republic

Stefanos Kaxiras  Industrial Systems Institute, Patras, Greece

Hans G. Kerkhoff  University of Twente, Enschede, The Netherlands

André B. J. Kokkeler  University of Twente, Enschede, The Netherlands

Ralf König  Institut für Technik in der Informationsverarbeitung (ITIV),
Karlsruhe Institute of Technology KIT, Karlsruhe, Germany

Kamil Krátký  Advanced Technology Europe, Honeywell International,
Brno, Czech Republic

Matthias Kühnle  Institut für Technik der Informationsverarbeitung,
Fakultät für Elektrotechnik und Informationstechnik,
Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany

Georgi Kuzmanov  Computer Engineering Lab, Faculty Electrical Engineering,
Mathematics and Computer Science, Technische Universiteit Delft, TUD, Delft,
The Netherlands

Eric Lenormand  THALES, Paris, France

Wayne Luk  Department of Computing, Imperial College London,
London, UK

Giacomo Marchiori  Dipartimento di Fisica Università di Ferrara, Ferrara, Italy

Debora Motta Matos  Universidade do Rio Grande do Sul, Passo Fundo, Brazil

Sally A. Mckee  Chalmers University, Gothenburg, Sweden

Philippe Millet  Thales Research & Technology, Paris, France

Contributors xiii

xiv

Razvan Nane  Computer Engineering Lab, Faculty Electrical Engineering,
Mathematics and Computer Science, Technische Universiteit Delft, TUD, Delft,
The Netherlands

Jari Nurmi  Tampere University of Technology, Tampere, Finland

Bryan Olivier  ACE Associated Compiler Experts b.v., Amsterdam,
The Netherlands

Frank Oppenheimer  OFFIS – Institute for Information Technology, Oldenburg,
Germany

Juha Pärsinnen  VTT, Espoo, Finland

Zlatko Petrov  Advanced Technology Europe,
Honeywell International, Brno, Czech Republic

Jean-Marc Philippe  CEA, LIST, Paris, France

Wolfram Putzke-Roeming  Deutsche Thomson OHG, Hanover, Germany

Nikola Puzovic  Universita’ degli Studi di Siena, Siena, Italy

Jussi Raasakka  Tampere University of Technology, Tampere, Finland

Gerard Rauwerda  Recore Systems, Enschede, The Netherlands

Jean-Luc Roux  ACIES, Paris, France

Mateus Rutzig  Universidade do Rio Grande do Sul, Passo Fundo, Brazil

Axel Schneider  Alcatel-Lucent Deutschland AG, Stuttgart, Germany

Alex Shafarenko  University of Hertfordshire, Hatfield, UK

Eberhard Schüler  PACT XPP Technologies AG, Munich, Los Gatos, Germany

Vlad Mihai Sima  Computer Engineering Lab, Faculty Electrical Engineering,
Mathematics and Computer Science, Technische Universiteit Delft, TUD, Delft,
The Netherlands

Gerard J.M. Smit  University of Twente, Computer Science, Enschede,
The Netherlands

Hans van Someren  ACE Associated Compiler Experts b.v., Amsterdam,
The Netherlands

Ioannis Sourdis  Computer Engineering, Chalmers University of Technology,
Gothenburg, Sweden

Kim Sunesen  Recore Systems, Enschede, The Netherlands

Benoit Tain  CEA, LIST, Paris, France

Contributors

xv

Florian Thoma  Institut für Technik der Informationsverarbeitung,
Fakultät für Elektrotechnik und Informationstechnik, Karlsruher Institut
für Technologie (KIT), Karlsruhe, Germany

Raffaele Tripiccione  Dipartimento di Fisica Università di Ferrara, Ferrara, Italy

Bart Vermeulen  NXP Semiconductors, Eindhoven, The Netherlands

Nikolaos S. Voros  Department of Telecommunication Systems & Networks,
Technological Educational Institute of Mesolonghi, Mesolonghi, Greece

Stephan Wong  Technische Universiteit Delft, Delft, The Netherlands

Ayal Zaks  IBM, Haifa, Israel

Xiao Zhang  University of Twente, Enschede, The Netherlands

Henk van Zonneveld  Thales Netherlands, Hengelo, The Netherlands

Contributors

149

Abstract  The ÆTHER project has laid the foundation of a complete new framework
for designing and programming computing resources that live in changing
environments and need to re-configure their objectives in a dynamic way. This chapter
contributes to a strategic research agenda in the field of self-adaptive computing
systems. It brings inputs to the reconfigurable hardware community and proposes
directions to go for reconfigurable hardware and research on self-adaptive computing;
it tries to identify some of the most promising future technologies for reconfiguration,
while pointing out the main foreseen Challenges for reconfigurable hardware. This
chapter presents the main solutions the ÆTHER project proposed for some of the
major concerns in trying to engineer a self-adaptive computing system. The text
exposes the ÆTHER vision of self-adaptation and its requirements. It describes and
discusses the proposed solutions for tackling self-adaptivity at the various levels of
abstractions. It exposes how the developed technologies could be put together in a
real methodology and how self-adaptation could then be used in potential applications.
Finally and based on lessons learned from ÆTHER, we discuss open issues and
research opportunities and put those in perspective along other investigations and
roadmaps.

7.1 � Project Partners

	  1.  CEA, LIST, France (coordinator)
	  2.  University of Amsterdam, The Netherlands
	  3.  University of Hertfordshire, UK
	  4.  University of Karlsruhe – Karlsruhe Institute of Technology, Germany

C. Gamrat (*)
CEA, LIST, Centre de Saclay - Point Courrier 94,
F-91191 Gif sur Yvette Cedex, France
e-mail: christian.gamrat@cea.fr

Chapter 7
AETHER: Self-Adaptive Networked Entities:
Autonomous Computing Elements for Future
Pervasive Applications and Technologies

Christian Gamrat, Jean-Marc Philippe, Chris Jesshope, Alex Shafarenko,
Labros Bisdounis, Umberto Bondi, Alberto Ferrante, Joan Cabestany,
Michael Hübner, Juha Pärsinnen, Jiri Kadlec, Martin Danek, Benoit Tain,
Susan Eisenbach, Michel Auguin, Jean-Philippe Diguet, Eric Lenormand,
and Jean-Luc Roux

J.M.P. Cardoso and M. Hübner (eds.), Reconfigurable Computing: From FPGAs
to Hardware/Software Codesign, DOI 10.1007/978-1-4614-0061-5_7,
© Springer Science+Business Media, LLC 2011

150 C. Gamrat et al.

  5.  Università della Svizzera italiana, Switzerland
  6.  Imperial College, UK
  7.  VTT, Finland
  8.  Universitat Politècnica de Catalunya, Spain
  9.  UTIA AV CR, Czech Republic
	10.  CNRS, France
	11.  INTRACOM, Greece
	12.  THALES, France
	13.  ACIES, France

Project Coordinator: Christian Gamrat, CEA, LIST, France•	
Start Date: 2006-01-01•	
Expected End Date: 2009-06-30•	
EU Program: 6•	 th Framework Programme, FP6-2004-IST-4, FET-ACA Project
No. 027611
Global Budget: 6 M €•	
Global Funding by EU: 4 M €•	
Contact Author: Jean-Marc Philippe, jean-marc.philippe@cea.fr•	

7.2 � Introduction

A few decades ago, a computer was a very big, expensive and intriguing machine
for much of the people. It was thought by many as something that would probably
never cross their daily life. It was a time when computers were rare and enormous
machines surrounded by millions of intrigued people. Nowadays the picture has
completely changed and we find people surrounded by dozens of computers, many
of them sitting hidden in the most awkward places. At the same time, we have wit-
nessed a silent change in the way most computing resources are being used: instead
of having one mainframe computer used by hundreds of persons, one can see now
each person using at the same time multiple computing resources. They can be
found everywhere running practical applications in our mobile phones, our TV sets,
our cars, our houses, in the streets of our towns, etc. All those embedded computing
resources are increasingly heterogeneous and increasingly interconnected and build
up very complex intricate computing mesh. Indeed, many modern applications do
not rely on a single computing resource but rather on a group of various computing
elements. And the situation is bound to be even more complex in the future as new
applications needs and new technology emerge.

In the context of applications running on vast amount of heterogeneous and
potentially volatile computing resources, the tasks of designing, programming,
optimizing and managing systems are key issues. When seeking solutions for those
problems, one very straightforward observation comes to mind: it would be far
easier for the application designer if each part of the system could embed enough
intelligence and independence so that they could locally and dynamically optimize

1517  AETHER: Self-Adaptive Networked Entities…

their resources and the way they perform tasks according to the function they have
to perform. In such a system, the application designer could focus on the topic he
knows best: the application. There is certainly more in the idea of self-adaptive
computing than the fact of helping the designer, even though this is an important
reason for its use in implementing complex and heterogeneous systems. The
computing system would therefore act like an army of tiny assistants (or agents)
not only executing a given program but also assisting the designer to dynamically
fine-tune the program according to implementation specific details. This intuitive
observation has been the root idea envisioned when preparing the ÆTHER
project.

The fact that current computing techniques will not be able to cope with the rising
complexity of future applications and architectures has long been identified by
research groups. One of the most notable efforts has been put forward by the IBM
Autonomic Computing Research initiative [1]. Even before this, authors who laid
down the foundation of modern computing [2] were aware that building the ideal
computer system should involve a degree of autonomy in order to deal with the
computing complexity of high-level tasks. High level tasks were then considered as
those trying to mimic the human intelligence and cognitive processes. The rationale
was then straightforward: an ideal electronic computer (electronic brain) should
behave like a biological brain exhibiting a level of autonomy, self-healing and self-
control. In the meantime, the fantastic evolution of microelectronics boosted by
Moore’s law [3] has led to multi-billion transistors chips that can implement hundreds
of microprocessors in a typical computing system. At the same time, the complexity
of the software layers has dramatically increased, leading to systems that become
very difficult to design and operate.

Being very aware of the intricacy of the various levels of a computing system, the
ÆTHER consortium embarked on the challenging path of pluri-disciplinary co-
engineering three of the main aspects of self-adaptive computing: software pro-
gramming, run-time system and hardware implementation. This document presents
the solutions we came about to address some of the major concerns of building a
self-adaptive computing system. After exposing our vision of self-adaptation and its
requirements, we describe and discuss the solutions we put forward for tackling
self-adaptivity at the various levels of abstraction. We then present how the proposed
solutions could be put together in a real methodology and how self-adaptation could
then be used in real applications. Finally and based on lessons learned from ÆTHER,
we discuss open issues and research opportunities and put those in perspective along
other investigations and roadmaps.

7.3 � Self-Adaptation

Self-adaptation can be defined as the ability of a system to react to external changes
by modifying its behavior based on a local policy. This definition introduces two
important concepts:

152 C. Gamrat et al.

Obviously, such a system first needs to exhibit adaptability. Adaptability is the •	
result of a reactive process modeled by a feedback loop. Loops (for short) are
the basic objects of any adaptation process and as such shall be the basic objects
to deal with. And loops are everywhere around us!
Secondly there is the notion of •	 Self. In the above simplistic definition, “Self” is
tightly related to the “local policy”. In its simplest form the “Self” of a system is
entirely described by its local policy. “Self” is the local behavior of the system,
it is the knowledge that needs to be maintained locally and that provides the
autonomous (or local) behavior.

Therefore, Self-Adaptation is not only about adaptive loops. Self-adaptation
means loops plus knowledge and this was well described by Kephart and Chess [4]
of IBM Autonomic Computing research group. A lot can be said on the relevance of
this simple definition on computing systems as it implies various notions:

What does the system need to observe in order to trigger adaptation? What is an •	
observer?
What is the mechanism allowing the adaptation process? Is it parametric or •	
structural?
What kind of rule or policy should be applied to the system so that it can adapt?•	
What level of supervision is needed? Can the process be completely autonomous?•	

In the simplest adaptive system, a closed loop allows for controlling a process
based on the observation of how the process performs against a given performance
target. The target or objective is generally set or computed by an external mean.
Example of such adaptive systems includes the dynamic regulators that can be
designed using analogue or digital techniques for specific tasks: temperature con-
trol, speed regulation, etc. Such systems are generally designed in a specific fashion
for the task to be realized. Sensors and actuators play a key role in their implementa-
tion. In a self-adaptive system, the target objective can be adjusted locally based on
the context and/or the observation of various parameters. Let us look at a simple
example. A fairly basic application is one of a system that dynamically adapts the
temperature of a device. In its simplest form, the circuit depicted in Fig. 7.1 will
continuously control the temperature of the object by applying a corrective action
on the actuator directly computed from the difference between the measured and
target temperatures. Such a simple setup is alright if the system is in a known con-
text, the components do not change much and finally the target can be expressed in
a very accurate way like a numerical temperature value. Now what happens if some-
thing changes in the system environment so that the statically designed control loop
can no longer achieve its goal?

In the simple adaptive loop, the best that can be done is probably to detect that
the system is entering a non-optimal scenario by monitoring the closed loop error
and identifying that the programmed behavior of the controller cannot cope with the
situation. In this case the best that can be done is to raise an error signal and inform
that the system is diverging from an optimal scenario. It is important to note that the
optimal scenario has been defined statically at design time and is embedded into the
controller behavior.

1537  AETHER: Self-Adaptive Networked Entities…

In the self-adaptive system, the optimal scenario (probably the most frequent one)
would be part of the initial knowledge embedded into the system at design time.
A knowledge management structure would constantly monitor the behavior of
the loop and keep track of patterns of activity. This unit would also keep track of the
related context and store initial parameters. In such an arrangement, a local knowledge
base contains a set of optimal scenarios in the form of various parameters (e.g. range of
values, bitstreams, algorithms, etc.) applicable for different known situations or
contexts. In case a non-optimal scenario occurs, a self-adaptive system will be able
to start a process for selecting a scenario (i.e. part of the current knowledge base)
adapted to the current context. In a more sophisticated implementation, the system
will be able to synthesize a new scenario adapted to an unknown situation and
update the local knowledge base.

That’s where we enter the realm of self-adaptivity. The first ability of the system
should be to detect that it is diverging from a normal scenario. The second ability it
must have is to take a decision on what is the best action to take when the nominal
control scenario is out of bounds.

Using a programmable computer, adaptive and self-adaptive loops can be easily
programmed in software using known software techniques but there is more than
the mere programming of loops in the design of a self-adaptive system.

Software can be programmed in a self-adaptive way without necessarily relying
on specific support mechanisms provided by the system (self-adaptation embedded
in the source code); this self-adaptation mechanism can be entirely described at the
software level. When software is considered, a number of possibilities for self-
adaptation are available: run-time and dynamic change of the application goals (i.e.,
the application changes its high-level requirements for the system), adaptation based
on selection of different behaviors (i.e., a different implementation of the same
algorithm is selected), and intra-algorithm adaptation (i.e., some of the parameters
of the considered algorithm implementations are changed at run-time). All of these
self-adaptation mechanisms could be directly implemented in the software applica-
tion, even though the first method requires support from the system to be effective.

Fig. 7.1  Representation of a simple adaptive loop (a) compared to a self-adaptive loop. (b) Self-
adaptation is more than an adaptation loop; it is control loop + knowledge

154 C. Gamrat et al.

This is fine as long as the adaptation process does not require any data from or any
action to the underlying system.

Nevertheless, management of self-adaptivity should not be mixed with the func-
tionalities in applications as this would put a burden on application developers and
it would be a source of programming errors. Separation of concerns, which is a
principle in which this separation is defined, should be therefore applied at all
system levels.

Self-adaptivity can be both in the software and in the underlying hardware; the
self-adaptivity control mechanism must provide a way to manage adaptations in
hardware and in software effectively, thus allowing reaching application goals.
Adaptation at different levels must be coordinated properly.

At hardware level there are two possible kinds of self-adaptation: structural (i.e.,
change in the functional units or in the interconnections) and on parameters (i.e., hard-
ware parameters – such as frequency – are changed during run-time). Self-adaptive
hardware can either manage adaptations internally or it can delegate (partly or entirely)
this management to the software layer. For providing internal self-adaptation, the
hardware needs to be able to change its configuration in a transparent way with respect
to the software layer. Whenever software support is required for self-adaptivity, the
hardware must notify to the software its reconfiguration capabilities. In both cases,
the hardware may provide some information on the application execution and on the
parameters that can be monitored and/or directly controlled by the software layer.
Different kinds of hardware architectures may be utilized in a self-adaptive system.
Software developers should be enabled to write applications without necessarily
knowing the structure of the underlying hardware and the mechanisms used for self-
adaptation. In fact, the management of all of these details would make the job of the
programmer too complex, it would break portability of applications, and it would
remove any convenience in using self-adaptive systems.

The task is then to find ways to engineering loops within the complete computing
system: loops in the software, loops in the run-time system and loops at the proces-
sor hardware level. Moreover, the adaptation loops at the various level of the com-
puting system shall be implemented in a way that interactions across them are not
only possible but inevitable.

7.4 � Self-Adaptation from the Software Engineering
Point of View

What is self- at the software engineering level? Here we are not talking about plat-
forms that adapt to the environment, we are talking about a program that is not
engineered to respond to some changing environment (that would be merely part of
the control structure of the code), but rather is presented in a way that makes it pos-
sible to achieve self-adaptation at the system level. Hence self-adaptivity in software
engineering is always an indirect phenomenon, its manifestation is more efficacy
than effectiveness, and in that it is an enabling factor rather than the effect itself.

1557  AETHER: Self-Adaptive Networked Entities…

How is software to be engineered to promote self-adaptivity? Obviously, by trying
not to prevent it by the obfuscation of the algorithmic properties with the machinery
of imperative code. Whatever layers of adaptation lie below the top level of software
engineering, these layers would need to have room for manoeuvre if they are to
deploy their adaptation capabilities. But what specifically do we mean by this?

There are two main forms in which an application can be presented. First of all,
it can be phrased in terms of state-transitions of an application-specific virtual
machine. Indeed, that is what typically happens in software development processes
in industry nowadays. A programmer creates a virtualization level by preparing
program code for basic computations of an application domain, such as FFT, filters,
correlators, etc., in the form of library function, and then a program is written which
follows a transition diagram of the “business logic” (a video encoder would be one
good example) using library functions with each transition. The problem with this
form of presentation is that the notional state machine that makes those transitions
is too rigid a metaphor, and so it encourages the implementer to realize it literally as
a sequential state-transition process. The notional transition diagram, however, is rich
in symmetry, which enables a good programmer to produce parallel code, whereby
several avenues across the diagram are taken at the same time while preserving its
sequential semantics. Nevertheless, doing so requires a deeper understanding of the
business logic than the original design required and/or passed on. Such understanding
is not readily available given the prevailing training and recruitment paradigms in
industry, but even where it is, the process of designing genuinely parallel code is
very complicated and error-prone.

There is another form in which programs can be presented. That form is based on
the view of an application as a kind of dynamic circuit, in which information flows
along streams that connect component nodes. It is a stream processing view, in
which a program is conceptualized as a graph and the nodes of that graph define the
mapping of inputs onto outputs. For example a node that multiplies input data by
two before outputting it is seen as an order-preserving mapping of any x in the input
stream onto the output stream with the value of the corresponding element being 2x.
The radical difference from the state transition view is that the “library function”
here, i.e. multiply-by-2, is not called by a transition machine of any kind; instead it
is activated by the arrival of the data itself. The stream processing view is inherently
non-prescriptive as far as the order of actions, it is asynchronous and naturally parallel.
Moreover, it is highly available to programmers of all levels of proficiency since the
desirable properties (concurrency, asynchrony, decentralization) are not engineered
by the developer, but are discernibly present simply in the way the application is
presented. They aid self-adaptivity by allowing the system to choose its way of
executing the program, by activating those nodes that have data and are not over-
loaded, while reducing the pressure on the nodes that are either overloaded or have
insufficient resources. The programmer, the system designer and the application
domain specialist are not involved in making those adaptations; rather the system
itself finds its way through the configuration space at run time.

In ÆTHER we have seen it as our purpose to employ the stream-processing
abstraction as a vehicle of software specification and implementation. In order to

156 C. Gamrat et al.

expose as much potential self-adaptivity to the lower levels as possible we came up
with a simple design principle, which we call aggressive decomposition. Unlike the
state transition view, where splitting a state machine into several communicating
state machines is potentially error-prone, the stream processing view is essentially safe:
for example, splitting a node into two connected in a pipeline is as well understood
as the mathematical notion of function composition. Communication overheads are
not an issue either: if the graph structure becomes too fine, one can fuse a graph
segment back into a single node down at the implementation level without jeopar-
dizing the semantic correctness.

The principle of aggressive decomposition is stated as follows:

Decompose the application into a graph using the smallest meaningful nodes
possible

By a meaningful node we assume a node whose function can be understood in
terms of the application domain concepts from its name and interface definition. For
example, an FFT node is meaningful, and so is matrix dot product, but multiplication
by 2 may be not.

The way we propose to achieve the required decomposition is a top-down strategy.
A designer in collaboration with an application domain expert produce a stream
processing graph annotated with nodal functions at the nodes and data types at the
arcs. Then each nodal function is considered in turn. For a node that is complex
enough to be decomposable, a subgraph is produced which replaces the node, until
all nodes are smallest meaningful nodes. Then an application programmer is engaged
to produce nodal code for all the nodes according to the relevant application domain
algorithms, while an independent concurrency engineer writes some coordination
code (using the language proposed by ÆTHER, S-Net) which defines the graph
structure and the packaging and synchronization of any data as it moves about the
graph. In reality, the strategy could be partly bottom-up, partly top-down: some com-
ponents may already be available and some networks can be designed without the
knowledge of the bigger picture. Finally the coordination program is presented to a
self-adaptive SANE platform, which dynamically merges sections of the graph into
single nodes for adaptation purposes and from time to time splits merged nodes back
into networks when the conditions change. We have partly implemented this vision
and have shown that this style of application design is possible and natural to a range
of applications. It is up to the future research to demonstrate that lower levels of the
system hierarchy as envisaged by ÆTHER can use the exposed adaptability to
achieve self-adaptation. ÆTHER has certainly made a start in this direction.

7.5 � Separation of Concerns

Dijkstra was probably the first who saw software engineering as a systematic activity
based on separation of concerns [5]. Indeed, it is as true now as it was in his life
time, only the concerns have become much more involved. To an extent, the software

1577  AETHER: Self-Adaptive Networked Entities…

engineering strategy outlined above is about separation of various concerns: those
of adaptivity from those of program specification, those of coordination from those
of computation, etc. However, we believe that the same level of disruptiveness is
required in the mechanisms of abstraction (another name for separation of con-
cerns) as it is in more immediate implementation-related aspects of application
development. Here the principle that ÆTHER has put forward is one of universal
componentization. The components in our stream processing view are, naturally,
graph nodes. What is new here is that we do not allow them to have a variety of
connection types and a variety of state-transition behaviors.1 We have found that
for the many types of applications components do not need to have a persistent
state. This means that whatever internal stages the function may go through, what-
ever decisions may be made that cause it to change the course of computation, as
soon as the result is produced and sent to the output, the state can safely be
destroyed. This means that the processing node is a pure function that inputs one
message and outputs zero, one or more messages and then re-initializes itself.

Moreover, we institute a SISO (single-input, single-output) principle [6, 7],
whereby the component has only one input stream and produces only one output
stream. On the surface this strategy seems very restrictive, but in fact it is not. The
reason for it is our use of non-determinism as a phenomenon that almost replaces
the multiplicity of incoming stream connection by allowing data to be arbitrarily
ordered when streams are merged into one. It is yet another principle that promotes
uniformity and separation of concerns. Suffice it to say that careful use of data types
and some structural second-order components that we call combinators make non-
determinism an enabling mechanism for multiply connected networks of singly
connected components, as well as an additional mechanism of self-adaptivity.

Our approach draws a clear dividing line between the coordination infrastructure,
fully defined by the concurrency engineer, and the computational infrastructure for
which the applications programmer is responsible, and that line also divides up the
variety of concerns (see Table 7.1). The concurrency engineer sees components as
black boxes equipped with a certain meaningful interface. It is his concern to supply the

Table 7.1  Separation of concerns between concurrency engineering and application programming
Concurrency engineer Applications programmer

Basic understanding of component logistics Expert knowledge of component logic
Expert knowledge of concurrency issues Basic understanding of component

composition for a given application
Focus on: coordination of components

in multi/many-core systems
Focus on: algorithms, correctness, abstract

complexity of components
Additional focus on: system self-adaptivity

and flexibility
Additional focus on: component compatibility

and generality

1 It should be said that despite the fact that the whole application is a graph rather than a state-
transition machine, the nodal functions are pieces of conventional code written by an ordinary
applications programmer, hence they do have a state-transition behavior.

158 C. Gamrat et al.

required data by bringing in, mixing and synchronizing various streams present in the
graph in arc form so that a unit of work could be produced from a unit of message.

It is also the concurrency engineer’s concern to ensure that the unit of work
which produces output messages through the component interface is supported by
the outgoing arcs that will deliver these messages to the nodes that need them for
their units of work. The concurrency engineer has no great need to understand the
intricacies of the processing scheme; if the designer has done his job properly, the
same engineer can be used to process data in areas as different as multimedia com-
pression and high-energy physics. What will change is the graph and its labelling,
but not the nature of the stream coordination. The quality indicator of the concur-
rency engineer is his ability to appreciate the system’s requirement for self-adaptation
and to introduce monitoring, feedback and reconfiguration facilities on top of the
basic data-processing scheme. He is empowered to do so by the high level of abstrac-
tion provided by our paradigm, which guarantees that encapsulated data cannot mix
and be delivered to the wrong place in a type-correct program.

At the other end of the software production line is an applications programmer,
now liberated from all and every communication, concurrency or synchronization
concern. The programmer now assumes the availability of bite-size work, prepack-
aged for execution with all the necessary data and state information that the node
needs, and for which the computation must result in the production of zero or more
messages. Even the fate of these messages is not a concern for the programmer, only
the values contained in them. Never before in the history of distributed parallel
computing was the application programmer so much liberated. There is no miracle
here either: the functions formerly foisted on that programmer are now passed on to
a generalist (as far as the application domain) concurrency engineering expert. That
is the main achievement of the ÆTHER software engineering philosophy – and
the reader will notice that its feasibility is inexorably linked with the adaptivity of
the platform. Without that adaptivity, the concerns of parallel execution cannot be
approached by the concurrency engineer generally, and as a consequence, some of
them would be passed up to the applications programmer thus destroying the sepa-
ration of concerns.

7.6 � Self-Adaptation from the System Engineering
Point of View

First we make the observation that executing sequential code on a conventional core
does not really expose much opportunity for adaptation of any kind. Some tradeoffs
may be possible here in terms of performance vs. power requirements but it is not
until we introduce the concerns of concurrency and reconfiguration that this picture
becomes anything other than one dimensional. Thus we assert that the fundamental
issues in adaptation from the systems engineering point of view are largely con-
cerned with defining concurrent units of work, mapping those units onto available
processing resources and providing a schedule for execution, where multiple units
of work are mapped to the same resource. The latter is critical in providing an

1597  AETHER: Self-Adaptive Networked Entities…

efficient utilization of a given resource when embedded in an asynchronous networked
environment. The scheduling of virtual concurrency or parallel slackness [8] is the
only generic mechanism available to enable an application to tolerate high latency
operations, while maintaining throughput at the processing resource. Moreover, for
efficiency, that scheduling should be data driven rather than based on any polling
mechanism. This is a fundamental tenant of the dataflow principle, which executes
a unit of work based on data availability rather than through some pre-programmed
sequence [9].

Having established what we mean by adaptation, again we have to ask what the
self at the system engineering level is. And again, we are not talking about control
structures in the program that are engineered to respond to some changing environ-
ment. This would need to be predicated on the program having knowledge of its
environment or mapping. Self-adaptivity in systems engineering comes about
through the dynamic mapping and scheduling of defined units of work onto available
resources in order to meet the computational demands of the application, while
respecting any system constraints such as resource limitation, power consumption
and physical location. Thus self implies a layer, component or components in the
system, which given some knowledge of its environment and given some knowl-
edge of its instantaneous or predicted computational load, reconfigures itself by
mapping and scheduling the computation to best meet any constraints imposed
upon it.

Clearly, one of the key separations of concern in systems engineering for self-
adaptation is the separation of the definition of units of work from their map-
ping and scheduling on a set of resources. This implies providing the means to
decompose programs into concurrent units of work in an abstract manner that does
not make any assumptions about mapping and which moreover retains some char-
acteristics important for such mapping. The main issue here is to be able to capture
locality (i.e. tasks or units of work communicating with each other) in an abstract
manner.

7.6.1 � Granularity of Units of Work

One of the key issues in any form of parallel computing, which determines the
efficiency of computation is the granularity of the unit of work which is mapped
(distributed to another node) and/or scheduled.

From the point of view of distribution, if the cost of communication (time and/or
energy) is large compared to the cost of computation at the remote place (time and
or energy saved), then there is little to be gained from distribution unless the amount
of computation performed there can be increased. In other words for a given cost in
distribution, there is an amount of computation or grain size below which it does not
make any sense to distribute the computation.

Similarly, from the point of view of managing concurrency locally, there is a cost for
creating, synchronizing and scheduling a unit of work. Again, if the cost of managing
concurrency (time and/or energy) is large compared to the cost of computation at the

160 C. Gamrat et al.

remote place (time and or energy saved), then there is little to be gained from
executing the unit of work concurrently unless the amount of computation per-
formed there can be increased.

These constraints provide quite a dilemma in being able to define a virtual
machine model for self-adaptation. On the one hand we need to separate the decom-
position of a program into concurrent units of work from the processing resources
to which those units of work will be mapped. Yet on the other hand, as we see
above, there are constraints on the minimum size of a computation. The only solu-
tion to this dilemma that maintains generality is to statically decompose the applica-
tion into the finest level of granularity possible and then to dynamically aggregate
units of work (sequentialize the concurrency) where necessary. Unless a fine grain
approach is adopted, fine-grain architectures cannot fully exploit the concurrency
available, which may only be at the instruction level in some algorithms. However,
a well-defined concurrent composition can always be executed with a sequential
schedule to meet the granularity constraints imposed by a particular processing
resource.

This in turn raises a number of other issues, such as how to represent the code for
the abstract machine and how to dynamically transform this code so as to perform
this aggregation (granularization). These issues are best dealt with from a more
concrete perspective and will be picked up once the Self-Adaptive Virtual Processor
has been defined.

7.6.2 � SVP – An Abstract Model of Concurrency

In the discussion above two major issues have been identified. Self-adaptation
requires the abstract decomposition of a computation into a maximally concurrent
representation. That computation must then be dynamically mapped to available
resources in order to meet the constraints imposed by the computation itself, i.e.
non-functional constraints or by its execution environment.

To achieve this we have defined the Self-adaptive Virtual processor, (SVP),
which captures concurrency as hierarchical families of threads, where dependencies
between threads are captured by defining synchronizing variables in the code
(i-structures or dataflow synchronizers). SVP [10] is an abstract model of concur-
rency developed from prior work on Dynamically-scheduled RISC (DRISC) archi-
tectures [11] and refined into a general computational model in the NWO Microgrids
(2005–2009, [12]) and EU ÆTHER (2006–2009, [13]) projects.

In order to justify the choices made in defining SVP, against the more general
model of fine-grain dataflow, a number of patterns of concurrent execution need to
be explored. The first of these is replicated concurrency. Here a unit of work is often
a loop body, which can be executed independently a given number of times. That
number may be statically known, dynamically know prior to concurrency creation
or may be dynamically determined during concurrent execution. With the exception
of dynamically terminated replicated concurrency, this is the low hanging fruit,

1617  AETHER: Self-Adaptive Networked Entities…

exploited in most programming and execution models. These independent units of
work can be distributed or aggregated quite trivially. In SVP, this is captured by the
SVP create action, which creates a family of identical threads, where threads are
differentiated only by their index, which is initialized on creation.

A second form of concurrent computation often exploited in concurrency models
is asynchronous functional concurrency, where the unit of computation is a function
application. Here, concurrency is obtained by executing one or more functions
asynchronously with respect to the “calling” function. There are two approaches to
this form of concurrency: non-blocking, where all parameters to the function need
to be defined prior to its concurrent invocation and blocking, where a function is
invoked regardless of whether a parameter is yet defined and where the function
blocks when it requires that parameter. The latter exposes more fine-grain concur-
rency, as whereas the unit of scheduling in non-blocking execution is the function
itself, in blocking execution it becomes a partition on the function defined by the
synchronization points determined by the functions use of its parameters. This
means that, in the limit, the units of work that are scheduled may be individual
instructions. Dataflow computation is asynchronous functional concurrency, where
all functions are defined as machine instructions, i.e. where control flow is replaced
entirely with the dataflow firing rule, which required all operands of an instruction
to be defined before an instruction is scheduled.

The SVP model combines control flow and dataflow for efficiency in implemen-
tation. It implements asynchronous functional concurrency in a blocking manner,
where a function of arbitrary granularity is dynamically instantiated using the create
action and where the function definition defines certain of its parameters as
synchronizing.

In dataflow, a program is represented by a directed acyclic graph, where the
nodes represent the instructions and the arcs the dependencies between those
instructions. In dynamic dataflow, cycles, as induced for example by loops, are
removed by the expedient of coloring or tagging the graph’s edges. There are no
other limitations or the form of the graph, which exposes all possible concurrency
in a computation, which is both its advantage and achiles heel. The main barrier to
its implementation is in only being able to expose a fraction of this dependency
graph at any time due to the constraints of only being able to implement a finite set
of synchronizers. The SVP approach is preferred over this approach in order to limit
the amount of resources required for the capture of a program. It is much more effi-
cient to use sequence as a synchronizer where the delay in instruction execution is
known and can be statically scheduled.

The final form of concurrency supported in SVP is that of a classic pipeline,
which is implemented as replicated concurrency with a linear dependency (or
dependencies) between the threads created in index order. This is really an optimi-
zation on asynchronous functional concurrency, which reduces the cost of concur-
rency creation.

The SVP model is a hierarchical one. Any thread function in SVP may create
subordinate threads to an arbitrary level. The only constraint on the depth of such
recursive concurrency comes about in implementation, where a finite set of

162 C. Gamrat et al.

synchronizers (i-structures) must span all dependencies exposed. As dependencies
in replicated concurrency are constrained to be linear in index order, it is trivial to
sequence the creation of dependent threads in a single family and restrict the syn-
chronizing resources required to those required by a single thread. The same applies
to recursive creates, where synchronizers must be provided for all functions in the
create tree. Providing both concurrent and sequential versions of the function are
available, the run-time system may switch to sequential execution in a deep create
tree at the point where the last of the synchronizers is allocated.

7.6.3 � Implementations of SVP

SVP is defined in terms of its concurrency control actions and captured in an exten-
sion to the C language where the concurrency controls and synchronizing variables
extend the syntax and semantics of the C language in mTC [14]. Using the create
action and its corresponding synchronization point, which determines when the cre-
ated function has terminated (and updated global memory), both asynchronous
functional concurrency and replicated concurrency can be captured in the model.
This provides an abstract representation of a deterministic concurrent program.
To achieve an implementation SVP must provide a number of further actions and
concepts. Places are introduced as identifiers for processing resources and in an
implementation, a run-time system will attach a place at any appropriate point in the
concurrency tree. The model also provides an asynchronous mechanism to termi-
nate the execution of a concurrent unit of work and a mechanism to reflect on the
result of such actions, so that fault tolerance can be built into the systems developed
using SVP. Finally, the model is made fully generic (and non-deterministic) by the
use of an exclusive place used as a mutex, which sequentializes any request to exe-
cute a function at that place.

In the ÆTHER project we have implemented SVP at a coarse level of granularity
using compilers from mTC that translate this language into C++ and bind the result-
ing code with a library that implements the SVP actions. This implementation has
been used to demonstrate a complete tool chain from S-Net programs down to the
execution of functions on FPGAs, which are dynamically selected at run time for
executing S-Net components.

One of the successes of the SVP approach outside ÆTHER project has been
its use in the EU Apple-CORE [15] project, which is investigating the implemen-
tation of SVP at the finest level of granularity, namely in the ISA of a DRISC
processor. In this implementation binary code can be used as the representation
for a self-adaptive program and the various units of work can be mapped and
scheduled to cluster of cores of varying size with any changes to the binary code
at all. This project is also developing high-level compilers to and from this model.
This work includes dedicated SVP support for the functional array processing
language SAC [16, 17], as well as an automatically parallelizing compiler for
legacy C code [18].

1637  AETHER: Self-Adaptive Networked Entities…

7.7 � At the Hardware Level: Self-Adaptive Networked Entities

At the processor level, the key concept that supports self-adaptive properties at the
hardware level is the Self-Adaptive Networked Element (SANE). By designing
each computing element along the SANE design pattern, we guarantee its seamless
integration within the ÆTHER framework. The prerequisite is that each SANE pro-
cessor implements the SVP protocol for concurrency and resource management.
Furthermore, SANE implements a compute-monitor-control loop, making comput-
ing elements aware of what they are currently executing. This is the basic mecha-
nism which allows a SANE element to manage as much things as possible on a local
basis. This way each and every bit of computing resource has a level of autonomy
that makes it suitable to accept jobs delegated by the Run-Time system and returns
reports indicating the actual cost of execution. Each SANE is responsible for meet-
ing the conditions of any contract that it may agree to with the SVP program. The
SANE design patterns can be applied to a variety of hardware targets. In the course
of the ÆTHER project we have explored implementations based on standard pro-
cessors and hardware reconfigurable technologies but we believe that it could also
be applied to future architectures and technologies such as bio-inspired and nano-
fabricated hardware.

Basically, the SANE concept has two main properties which are described in
[19]. The first one is that it can react autonomously by changing its working param-
eters or its structure to improve its behavior (i.e. to meet the requirements of the
contract it has accepted). It is represented by the closed “compute, observe, control”
loop in the Fig. 7.2 that provides the SANE with embedded self-adaptation. The
second property of the SANE is that it is a collaborative entity which is able to pub-
lish its capabilities and also listen to other SANEs for their capabilities. It is also
able to delegate part of its work to other SANEs. This collaborative interface is
based on the SVP protocol that is described in the previous section.

As shown in Fig. 7.2, the SANE has been decomposed into four main blocks.
Each of the blocks represents one of the four main properties of the SANE. The
Computing Engine block is meant to be a computing resource for processing data in
the most flexible way. The computation process is monitored trough an observer
that computes metrics about properties related to the parameters to be monitored.
The goal of the observation feature is to capture self-adaptation triggering events in
order to feed the adaptation controller. Based on the information about the self-
adaptation triggering events, the adaptation controller takes all the required deci-
sions to face potential problems or to optimize the overall computation and perform
parametric or structural adaptation if needed. This observation-control loop enables
the SANE to manage its own resources.

The SANE has the ability to collaborate with other SANEs by means of a collabo-
ration interface. This collaboration interface enables the SANE to publish its abilities
to the environment. It is also able to delegate and to receive applications or parts of
them to/from other SANEs. It is based on the SVP/SEP protocol (SEP, for System
Environment Process, being a resource negotiation protocol on top of SVP [20]).

164 C. Gamrat et al.

When defining a self-adaptive architecture, the designer needs to list the different
events the architecture will have to cope with (e.g. failures or optimization to new
applications). This step enables to provide the architecture with the right sensors/
observation features to capture them. The observation feature of the SANE enables
it to track self-adaptation triggering events (i.e. modifications of the environment or
of the computation that will imply an adaption). From the hardware point of view,
these self-adaptation triggering events can be classified in different categories, listed
in Tables 7.2–7.4.

A designer should implement a SANE regarding these events in order to both
implement the required sensors (to observe the events) and to provide the imple-
mentation with the required flexibility (including the inner controlling algorithms)
so as to be able to react to these events.

A self-adaptive system needs observations to know about its state (self-
awareness) and the state of the environment (context awareness). These obser-
vations are done through the use of sensors that take raw information and send
them to the observer. The observer transforms this information into variables
and metrics (i.e. complex variables or events) that can be exploited by the
control to:

	1.	 Trigger an adaptation process
	2.	 Choose which part of the system to adapt and the type of required adaptation.

Communication
Interface

Computing Engine

Controller

Work
Management

SVP
SEP

Observer

Resource
Management

Data Processed data

Fig. 7.2  General view of the SANE. The compute, observe, control loop represents the embedded
self-adaptive behavior of the SANE whereas the communication interface represents its ability to
collaborate with other SANEs

1657  AETHER: Self-Adaptive Networked Entities…

Based on the taxonomy given in Tables 7.2–7.4, a number of sensors that can
be used to take knowledge from the environment and from the system itself can be
listed.

Table 7.5 shows the variety of the different variables that may be monitored
and exploited by the observer. One can notice that the types of the observations
are very different from each other. Thus, the interfaces between the sensors and
the observer are to be considered carefully for such a system. In the end, the
observer is a data transformation process that gathers the raw observations from
the sensors and computes a report composed of a set of metrics. These metrics
help the controller to monitor if the selected self-adaptation triggering events
occur. The different adaptation scenarios described in Tables 7.2–7.4 are not possible
with all the implementations. For example, changing the hardware implementa-
tion of a task is only possible with reconfigurable architectures such as FPGAs.

Table 7.2  Part I. Events, related measures, and possible adaptations at the hardware level
(delegation and observations of the computing environment are more related to system level but
may also have an influence on the local hardware resources)

Event Related measures/observations Possible adaptations

Deadline miss Execution time by online
profiling or workload
prediction

1.	 Increase the processing speed by
increasing the clock rate (or
processing rate)

2.	 Change the implementation or the
routing of the task to gain speed if
possible (possibly switch to an
interpolation implementation if
exact implementation is too slow)

3.	 Take advantage of possible
application parallelism by
requesting additional local
resources if available

4.	 Take advantage of the pervasive-
ness of the system by requesting
computing resources in the
environment to delegate the
computation

Lack of battery
power

Battery power given
by sensors

1.	 Decrease clock rate or processing
rate (if possible)

2.	 Change the implementation for a
less power consuming one
(including change of the physical
routing links, clock or power
supply gating, etc.)

3.	 Delegate the computation to
another resource in the
environment

166 C. Gamrat et al.

In traditional microprocessors, there is no possibility of structural adaptation,
whereas they are quite efficient for parametric adaptation (example of DVFS –
Dynamic Voltage and Frequency Scaling – algorithms for frequency and voltage
scaling). The adaptation of the implementation must be done at the software level.
This implies that the adaptation possibilities depend on the level of flexibility
provided to the computing entity by the chip designers. A completely flexible
design will have the potential to deal with a larger number of situations in com-
parison with a design that only have one or two degrees of freedom. But the poten-
tial advantages of a completely flexible design also imply drawbacks leading the
system designers to consider trade-offs.

These drawbacks are linked with both the degree of flexibility of the system and
the adaptation mechanism (adaptation rules and learning abilities). The more flexible
the architecture is, the more complex the adaptation engine will be (since the design
and space exploration for selecting the good target configuration is larger). The
adaptation mechanism is also of great importance with respect to the control
complexity. This mechanism can vary from simple control mechanisms such as “if
then else” statements that allow self-adaptation only between well-known situations
to learning and evolvable algorithms that may be very complex and take time to
converge, even if low convergence time is a practical criterion for self-adaptive
systems (see Table 7.6). In order to be useful, the decision taking mechanism and
the actual adaptation needs to be done quickly at a rate depending on the application
processing rate.

It is obvious that the observer cannot capture all the variables to know about the
complete state of the object and/or of the environment (due to the overhead of
the observers and sensors). The sensors and the observer help the controller to con-
struct and evolve (through adaptation rules) a model of the environment and the

Table 7.3  Part II. Events, related measures, and possible adaptations at the hardware level
(delegation and observations of the computing environment are more related to system level but
may also have an influence on the local hardware resources)

Event Related measures/observations Possible adaptations

Change of the data to be
processed

Observation of data type
through tags

Observations of the data
values

1.	 Dynamic modification of the
interfaces (clock rate,
synchronization
mechanisms, protocols, bus
bitwidth, etc.)

2.	 Modification of the imple-
mentation of the function

Change of the mission
(application or
constraints)

No real associated measure:
it depends on a control
command given from the
user who wants to execute
a new program or another
resource that delegate a
task

1.	 Change the current applica-
tion context

2.	 Tune the parameters of the
already loaded task (soft and
fast adaptation)

3.	 Change the task or its
implementation (hard and
slow adaptation)

1677  AETHER: Self-Adaptive Networked Entities…

Ta
bl

e
7.

4 
Pa

rt
 I

II
. E

ve
nt

s,
 r

el
at

ed
 m

ea
su

re
s,

 a
nd

 p
os

si
bl

e
ad

ap
ta

tio
ns

 a
t

th
e

ha
rd

w
ar

e
le

ve
l

(d
el

eg
at

io
n

an
d

ob
se

rv
at

io
ns

 o
f

th
e

co
m

pu
tin

g
en

vi
ro

nm
en

t
ar

e
m

or
e

re
la

te
d

to
 s

ys
te

m
 le

ve
l b

ut
 m

ay
 a

ls
o

ha
ve

 a
n

in
flu

en
ce

 o
n

th
e

lo
ca

l h
ar

dw
ar

e
re

so
ur

ce
s)

E
ve

nt
R

el
at

ed
 m

ea
su

re
s/

ob
se

rv
at

io
ns

Po
ss

ib
le

 a
da

pt
at

io
ns

Fa
ilu

re
 o

f
a

co
m

pu
tin

g
no

de
 o

r
of

 th
e

ne
tw

or
k

(p
ar

tia
l o

r
gl

ob
al

: o
nl

y
on

e
pa

rt

of
 th

e
ch

ip
 is

 c
on

ce
rn

ed
 o

r
no

t,
tr

an
si

en
t

or
 d

efi
ni

tiv
e)

R
es

ul
ts

 f
ro

m
 a

 s
et

 o
f

av
ai

la
bl

e
se

lf
-t

es
ts

 o
r

re
m

ot
e

te
st

s
(a

no
th

er
 e

nt
ity

 d
oe

s
no

t
re

sp
on

d
to

 r
eq

ue
st

s,
 e

tc
.)

1.
	

In
 c

as
e

of
 p

ar
tia

l f
ai

lu
re

 (
ch

ip
 le

ve
l)

: a
vo

id
in

g
th

e
fa

ul
ty

un

it
(r

e-
ro

ut
in

g
pr

oc
es

s
by

 s
el

f-
or

ga
ni

za
tio

n,
 s

w
itc

hi
ng

 to

a
de

gr
ad

ed
 m

od
e,

 tr
y

to
 r

ep
ai

r
2.

	
In

 c
as

e
of

 g
lo

ba
l f

ai
lu

re
: t

ry
 to

 r
ep

ai
r

(c
hi

p
le

ve
l)

,
re

-r
ou

tin
g/

is
ol

at
io

n
of

 th
e

fa
ul

ty
 c

hi
p

(s
ys

te
m

 le
ve

l)
3.

	
In

 c
as

e
of

 tr
an

si
en

t f
ai

lu
re

: e
rr

or
 d

et
ec

tin
g/

co
rr

ec
tin

g
co

de

(d
ep

en
ds

 o
n

th
e

er
ro

r
fr

eq
ue

nc
y

an
d

th
e

de
ad

lin
e)

, e
tc

.
4.

	
In

 c
as

e
of

 p
er

m
an

en
t f

ai
lu

re
: e

rr
or

-c
or

re
ct

in
g

co
de

 o
r

re
-r

ou
tin

g

C
ha

ng
e

in
 th

e
E

nv
ir

on
m

en
t (

ne
w

 r
es

ou
rc

es

co
m

in
g/

le
av

in
g,

 v
al

ue
 o

f
pa

ra
m

et
er

, e
tc

.)
D

ep
en

ds
 o

n
th

e
C

ol
la

bo
ra

tio
n

pr
ot

oc
ol

be

tw
ee

n
th

e
en

tit
ie

s.
 F

or
 a

 p
ub

lis
h/

di
sc

ov
er

y
m

ec
ha

ni
sm

, a
n

en
tit

y
ca

n
ob

se
rv

e
th

e
av

ai
la

bl
e

se
rv

ic
es

 o
ff

er
ed

by

 n
ew

 r
es

ou
rc

es
. T

he
 s

ys
te

m
 m

us
t

al
so

 b
e

aw
ar

e
of

 le
av

in
g

re
so

ur
ce

s.

1.
	

Ta
ke

 in
to

 a
cc

ou
nt

 n
ew

 n
ee

ds
 b

as
ed

 o
n

ex
pe

ri
en

ce
:

re
co

nfi
gu

re
 to

 a
cc

ep
t n

ew
 a

pp
lic

at
io

ns
 o

r
ta

sk
s

se
am

le
ss

ly

(p
re

di
ct

io
n)

2.
	

Ta
ke

 a
dv

an
ta

ge
 o

f
ne

w
 s

er
vi

ce
s

of
fe

re
d

by
 th

e
en

vi
ro

nm
en

t
to

 o
pt

im
iz

e
in

te
rn

al
 p

ro
ce

ss
 (

sl
ow

er
 th

e
in

te
rn

al

co
m

pu
ta

tio
ns

 a
nd

 d
el

eg
at

e
so

m
e

w
or

k
to

 a
 m

or
e

ef
fic

ie
nt

an

d
m

ay
be

 s
pe

ci
al

iz
ed

 e
nt

ity
, e

tc
.)

3.
	

R
ec

ov
er

 f
ro

m
 a

n
in

te
rr

up
te

d
co

m
pu

ta
tio

n
(d

ue
 to

 a
 le

av
in

g
re

so
ur

ce
),

 r
e-

di
st

ri
bu

te
 th

e
co

m
pu

tin
g

ta
sk

s.

168 C. Gamrat et al.

chip. This model can be explicit or implicit. For example, the model can be explicit
if the chip and its environment are formally described as sets of variables and equa-
tions. The model is implicitly described in the “if-then-else” mechanism since this
statement contains the necessary knowledge to take an adaptation decision based on
the gathered observations.

One can notice that one of the major problems of self-adaptation is the overhead
of the observation-control loop compared to the computation process. Taking into
account one variable describing the system, its environment or a self-adaptation
triggering event implies to include the related sensors, interfaces and logic in the
observer but also the related control logic in the controller. If the number of variables
is high, it can slow down the decision taking mechanism. One solution could be to
distribute the management of the parameters to different control loops, which may
be difficult since the different chip parameters are not independent from each other.
ÆTHER considered and studied different implementations of the SANE concept
and its specific parts especially the Computing Engine.

7.7.1 � SANE Implementation, the Case of Reconfigurable
Hardware

At first, FPGA technology seems a rather natural candidate when it comes to imple-
menting an architecture that changes over time. The capacity of new FPGAs to be
dynamically and partially reconfigured (even internally for certain Xilinx FPGA

Table 7.5  Examples of variables to be observed related to self-adaptation triggering events and
examples of the related measurement sensors

Observed variables Examples of related sensors

Task speed Timers
Battery power Power supply current sensors, in-battery sensors etc.
Data type Sensors related to meta-data extraction and identification
Mission change Identifier of pre-defined scenarios, critical parameter triggering pre-defined

mission switch (the mission semantics is generally statically defined at a
higher abstraction level and not sensed as such)

Failure BIST sensors, on-chip noise measurement sensors [21], etc.
Environment Sensors related to the physical environment (such as temperature, light, etc.)

Sensors related to the computing environment (sensing new resources and
their capabilities, timers for timeout measurements, etc.)

State of the chip Temperature sensors, current sensors, etc. [22–24]

Table 7.6  Different types of self-adaptation control algorithms and related characteristics.

Control structure Time to converge Potential complexity
Ability to deal with unknown
situations by self-adaptation

Control “if then else” Fast Low Low
Evolutionary and

learning
algorithms

Potentially slow High Potentially high

1697  AETHER: Self-Adaptive Networked Entities…

families with the ICAP interface) is seen as a nice self-adaptation enabler for
modifying the internal structure of the architecture that is placed on the device [25].

The fact that FPGAs are in essence fine grained reconfigurable architecture is
both a very interesting property and a real problem when designing self-adaptive
architecture. This paradox is linked to the above-presented trade-off between the
degrees of freedom of an architecture and the required control complexity to derive
the new configuration. The high degrees of freedom provided by FPGAs makes
them good candidates to implement SANEs since almost every modification of the
placed architecture can be envisioned. Therefore, the optimal architecture (i.e. the
one that best fit to the current environment) could be obtained in principle. The
problem resides in the fact that for approaching this optimal architecture, a lot of
different knobs must be controlled (i.e. a new configuration composed of millions
of bits should be computed). With a standard approach to hardware design, the steps
necessary to compute a new configuration (synthesis and place/route) are very time
consuming; they require tenths of minutes of computation and gigabytes of memory
on the latest workstations. As a result, and as of today, this cannot be reasonably
done dynamically at run-time.

The problem is alleviated on state of the art dynamic and partial reconfigurable
FPGA designs by performing the generation of pre-defined partial configurations.
Thus, the system just needs to load the pre-generated bitstreams at runtime. It means
that the system simply choose between available configurations using for example
a simple “if-then-else” control structure. These configurations may be hardware
tasks (e.g. bitstreams) or software tasks (e.g. different implementations of an appli-
cation or firmwares). This possibility offers basic self-adaptation properties such as
loading the right configuration depending on demands from applications or choosing
the best configuration by comparing the results and behaviors of multiple imple-
mentations. Additionally, having hardware and software flexibility enables to choose
between fast adaptation (usually provided by software reconfiguration) and slower
but deeper structural hardware reconfiguration.

A possibility to make progress toward the “on the fly” generation of bitstreams
consists in considering coarser-grain architectures. Since a SANE needs to be able
to rapidly adapt to the potential modifications of its environment, it must be quickly
reconfigured. Therefore, the generation and mapping of the bitstreams required by
the application needs to be automatic and very fast. These properties can be pro-
vided by coarse grain reconfigurable architectures. Such architectures have larger,
more complex basic hardware cells requiring less memory bits for their configura-
tion. One drawback is that these kinds of architecture are less flexible than fine grain
reconfigurable architectures.

Another potential problem related to the use of FPGAs is that a partial configu-
ration is only generated for a particular place on the device. The same VHDL or
Verilog code (even the same netlist) will have to be placed and routed for every
location on the chip. For example, with a system composed of a Xilinx MicroBlaze
with four dynamic and partial reconfigurable areas as presented in Fig. 7.3, there
are four places for hardware accelerators [26]. Even if the places have the same
shape, four different bitstreams need to be generated per accelerator (i.e. per
VHDL or Verilog description) to be able to place one hardware accelerator in

170 C. Gamrat et al.

each area. This implies a waste of memory resources for storing all the required
bitstreams. Even if this problem can be alleviated using the collaboration interface
of the SANE (i.e. the ability to ask for configurations to the network if the needed
configuration is not found in local memory), re-locatable hardware remains
one of the great challenges to be tackled to design self-reconfigurable hardware
architectures.

7.7.2 � SANE and Future Technologies

The relocation ability can have different levels depending on the structure of the
targeted hardware place (see Table 7.7).

HW
Operator

Interface
Core

Microblaze
(32-bit RISC soft-core)

Dynamic area

Static area

FSL linksEncapsulation
of the bus

macros

DPR 2
(HW accelerator)

DPR 3
(HW accelerator)

DPR 4
(HW accelerator)

Fig. 7.3  Schematic of a partially reconfigurable chip composed of four independent reconfigurable
areas (DPR) under the control of a local RISC controller (Microblaze). This is one example of a
SANE hardware implementation using state of the art fine-grained reconfigurable chips. Floor plan
view on the right

Table 7.7  Different types of relocation depending on the targeted hardware

Type of relocation Targeted hardware Required transformations

Static synthesis,
placement and routing

Exactly the same as the
old place

Rerouting of the I/O of the module, all
the internal structure of the relocated
module remains the same

Static synthesis, dynamic
placement and routing

Same resources but
placed differently

The placement and routing of the module
must be computed again (including
the I/O of the module).

Dynamic synthesis,
placement and routing

Different resources
(i.e. optimized or
spare resources)

The synthesis phase must be done again
(and consequently, all the other
phases)

1717  AETHER: Self-Adaptive Networked Entities…

In order to efficiently perform the relocation of hardware implemented tasks, two
prerequisites are needed at least:

First, the task should be described in a sufficient abstract language (abstract when •	
compared to traditional hardware netlists) so that the required relocation be
possible. In particular it should not contain any absolute locations for the routing
information (“parameterizable” IPs).
Secondly, a built-in distributed self-placement and self-routing mechanisms •	
should be available. The hardware substrate can then take the responsibility to
place and route the different tasks in a distributed way, without the need of a
centralized place and route supervisor.

So far, the steps and algorithms implied by those two prerequisites are very com-
putationally intensive. They would require embedding powerful processors within
the hardware substrate, a very costly solution that is probably not the way to go. It
is therefore a very promising but challenging opportunity to investigate solutions
that could make relocatable hardware possible in future generations of FPGA by
possibly using 3D-stacking and routing techniques.

7.8 � The ÆTHER Computing Framework: Implementation
and Applications

The technologies described and discussed above are just ways (the ÆTHER ways)
to try and give solutions to the generic problem of implementing adaptation loops at
the various level of a computing system (see Fig. 7.4). If defining and carefully
crafting technologies adapted to the various levels is a good start, it is far from
enough. The big challenge is thus to make those implementations of the common
design pattern for self-adaptation work together. That is exactly what the ÆTHER
computing framework is about.

7.8.1 � Design Workflow

The ÆTHER framework aims at implementing a design flow and supporting tools
for future dynamic, self-adaptive applications down to their implementation on dis-
tributed processor architectures (standard multicores or mGrids [27]) or dynami-
cally reconfigurable hardware [28] that implement the Self Adaptive Network Entity
(SANE) concept. The framework is based on two so-called “box” languages, Single
Assignment C (SAC) and Microthreaded C (mTC), one coordination language,
S-Net, that supports adaptability, and on the definition of the SANE Virtual Processor
(SVP) interface between architecture-naive application capture and the implemen-
tation on specific architectures (see Fig. 7.5).

172 C. Gamrat et al.

Different systems already use self-adaptivity to achieve different specific non
functional goals such as self-repairing and self-organization. Self-adaptation has
been used for a long time in different fields, such as, for example, networking and
distributed computing. In networking, self-adaptivity is used at router level to pro-
vide quality of service (QoS) to the communications. Self-adaptivity can be used,
in such a context, to recover from QoS violations. Other uses of self-adaptivity are
in the context of distributed and grid systems; in this case self-adaptivity is used
to provide QoS to the applications, to improve stability and fairness, and to man-
age resources efficiently. In complex networking environments self-adaptivity is
presently being proposed for dealing with the heterogeneity in the behavior of
network apparatus and to enable configuration-less insertion of new network
elements.

Self-adaptivity may be also used to provide fault-tolerance capabilities as it natu-
rally provides a way to deal with this issue by means of system reconfigurations.
Applications designers might be provided with mechanisms to specify fault-
tolerance requirements of applications; systems might be designed to automatically
provide these capabilities by means of self-adaptation. In this context, self-adaptive
systems might automatically put in place predefined self-adaptation patterns to
provide fault tolerance at different levels.

The applications of self-adaptive computing are very diverse ranging from
mobile and pervasive computing to any field that involves huge assemblies of com-
puting resources on or off chip. In all of those applications fields, the computing

Fig. 7.4  Self-adaptation and its potential applications at different levels of the ÆTHER comput-
ing framework. OE stands for Operating Environment: it is the distributed runtime manager of the
system. It allocates and schedules families of threads based both on QoS policies and resources
availability

1737  AETHER: Self-Adaptive Networked Entities…

system is exposed to potential changes in its environment that may occur as a result
of external or internal events such as incoming new devices, missing resources,
power shortage, reduced connectivity, component failure, etc. Self-adaptivity, cou-
pled with proper adaptation policies, helps dealing with such events, regardless if
they can be foreseen at design time (e.g., the migration of the system in different
environments) or not (e.g., a part of the system that becomes faulty). The ÆTHER
platform already provides all the mechanisms that are necessary to handle most of
these situations: it allows the system to change its behavior by mapping different
functionalities (e.g., different network protocols) on hardware blocks or by using
their software implementations; furthermore, the platform provides the capability to
change system parameters (e.g., the clock of hardware blocks), to control perfor-
mances of the different functionalities (e.g., by moving its implementation from
software to a specific hardware block and/or by parallelizing some of its parts).
Even the concept of self-adaptive security at application level relies on the
aforementioned mechanisms to keep the security level of applications constant,
regardless the changes in the environment and in the system. Proper self-adaptation
policies need to be designed for different systems: a small embedded system will

S-Net Coordination code

Standard
Multicore HW

S-Net stream-based
runtime system

Application Capture/Design

Box language computation
code: SaC, C, µTC

S-Net Compiler Box language Compiler

S-Net graph walker
runtime system

SVP/SEP

µGrid
Dynamically

Reconfigurable
HW

Self-
Organizing

HW

Fig. 7.5  The AETHER framework

174 C. Gamrat et al.

have different self-adaptation policies than a big distributed computational system.
Though, the description of these policies is much easier than designing the system
to cope with all known possible events.

Furthermore, the ÆTHER platform provides a first meaningful step in the direc-
tion of supporting automatic reconfiguration of systems to satisfy high-level non-
functional goals of applications. By building on this platform, it will be possible to
design systems in which these goals will be automatically satisfied by the system.
Non-functional goals express some requirements that are not related to functional
requirements (i.e., they are not related to the main functionalities of the applications);
they express additional requirements such as the need of a certain level of security,
the need of a certain level of reliability, and the need of a certain level of perfor-
mances. For example, the user or the application programmer may want to specify
that a certain application requires a certain level of reliability; the system should be
able to reconfigure itself to try achieving this goal. For example, faulty components
may be automatically replaced with non-faulty ones, even with a decrease of perfor-
mance when graceful degradation is accepted. In other cases, the system may require
more complex reconfigurations (e.g., by instantiating parallel slow components to
replace a fast faulty one). Similar measures can be taken for supporting security
requirements. In the same way, the programmer may want specify some perfor-
mance requirements for the application; the system will self-reconfigure to provide
the desired performances (e.g., by mapping certain functionalities to hardware or by
parallelizing hardware components). The ÆTHER platform provides some mecha-
nisms that can be used to support the utilization of high-level non-functional
requirements: by using the mechanisms provided by the platform, adaptations to
cope with reliability and performance problems are available. A mechanism to
translate these high-level goals into proper control algorithms for self-adaptivity has
still to be developed and remains one of the key areas where further research needs
to be done.

One promising field of application of the ÆTHER technologies is to introduce
self-healing or self-repairing behavior in computing resources in order to provide
graceful degradation of performances under a variety of threats (e.g. power short-
age, missing resources, sensor or general hardware failure).

7.8.2 � Implementation and Applications

To illustrate the ÆTHER framework and its supporting concepts and technologies
(see Fig. 7.5) which were described in previous pages, a coordinated set of demon-
strations were implemented during the project.

Among the different demonstrations, two will be described in the following
paragraphs. The first one shows how an industrial-level radar Moving Target Indi
cation (MTI) application can be captured and expressed in S-Net with boxes imple
mented in the functional array programming language SAC (Single Assignment C).

1757  AETHER: Self-Adaptive Networked Entities…

The design of coordination code is supported by the S-Net graphical development
environment, which is based on the MetaEdit + toolkit (see Fig. 7.6).

This demonstration shows how the graphical representation of an S-Net graph
can automatically be converted into a textual representation. The S-Net compiler
started from within the IDE validates the soundness of the S-Net description via
type inference and type checking. The resulting code is then automatically linked
with the stream-based S-Net runtime system for parallel execution on standard
general-purpose multicore and multiprocessor hardware.

The goal of this first demonstration was to show the suitability of the S-Net coor-
dination language to capture non-trivial, industrial-level applications. Its aim was
also to demonstrate the entire S-Net tool chain:

a graphical development environment for network construction•	
a compiler for validation of soundness based on a type system with record •	
subtyping
a runtime system for automatic management of parallel execution on standard •	
general-purpose multicore and multiprocessor hardware.

The goal of the second demonstration is to illustrate by a simple example the
entire ÆTHER design flow from application capture to execution on a dynamically
reconfigurable platform (see Fig. 7.7). A single application (Optical Character
Recognition) is captured as an S-Net network of C-coded processing boxes.

S-Net Coordination code

Standard
Multicore HW

S-Net stream-based
runtime system

Application Capture/Design

Box language computation
code: SaC, C, µTC

S-Net Compiler Box language Compiler

S-Net graph walker
runtime system

SVP/SEP

µGrid
Dynamically

Reconfigurable
HW

Self-
Organizing

HW

Code generation
Compilation

Link with S-Net Runtime

SVP/SEP

Emulated execution using
pThreads on general
purpose multicore /

multiprocessor hardware

Application capture
using S-Net and

AETHER
programming
environment

Fig. 7.6  Demonstration of a radar application, from S-Net to standard multicore hardware (empha-
sis on SNet and its programming environment)

176 C. Gamrat et al.

Coordination design is also supported by the S-Net graphical development
environment, which is based on MetaEdit + based S-Net environment. The box code
and the S-Net network will be respectively compiled by standard C and S-Net com-
pilers, and linked with the S-Net graph walker runtime which will interpret the
S-Net network and interface with SVP/SEP capabilities on both a Linux platform
(PC) and an embedded Linux for the Xilinx MicroBlaze processor within the FPGAs.

The application is then run on an hardware platform composed of a PC con-
nected to three reconfigurable FPGA boards via an Ethernet network. On each of
those boards, a SANE implementation contains an FPGA capable of running a char-
acter recognition task in software (on the MicroBlaze CPU) and/or in hardware, in
one or several of its four dynamically reconfigurable areas. For the purpose of dem-
onstration, the activities of MicroBlaze embedded microprocessors, PC and hard-
ware SANEs are displayed on a monitoring PC. Reconfigurations are shown, first
by having all computations done by the PC alone and then dynamically moved to
hardware SANEs when they join the system, or redistributed when they leave: this
will also show the capacity of the SANE to adapt themselves to execute the dele-
gated task the best they can (by on-the-fly partial reconfiguration and dynamic
retrieving of partial bitstreams over the network).

This demonstration gave an overview of the ÆTHER framework, showing appli-
cation capture with S-Net, the compile chains, and SVP/SEP operations on recon-
figurable SANEs. It illustrated how a programmer can build an application
independently from any specific target. Furthermore and thanks to the implicit

S-Net Coordination code

Standard
Multicore HW

S-Net stream-based
runtime system

Application Capture/Design

Box language computation
code: SaC, C, µTC

S-Net Compiler Box language Compiler

S-Net graph walker
runtime system

SVP/SEP

µGrid
Dynamically

Reconfigurable
HW

Self-
Organizing

HW

FPGA Board

SVP/SEP

FPGA Board

SVP/SEP

FPGA Board

SVP/SEP

OCR application captured in S-Net
graphical programming environment

Compile

Link

Graph Walker
runtime

SVP/SEP

SVP/SEPSVP/SEP

Runtime activity
display

TCP/IP

Fig. 7.7  Demonstration of the OCR application, from S-Net to reconfigurable hardware (empha-
sis on the execution of an S-Net-coded application on dynamically reconfigurable hardware,
including the use of hardware accelerators)

1777  AETHER: Self-Adaptive Networked Entities…

parallelism offered within S-Net, the demonstration illustrates how the Graph
Walker exploiting the SVP/SEP protocol, can dynamically map tasks to reconfigu-
rable resources and run them according to the specific properties of the target.

7.9 � Open Issues and Research Opportunities

A number of documents and roadmaps have been edited that strives to identify some
of the research opportunities for autonomous computing. They give us another com-
plementary perspective on the ÆTHER research.

7.9.1 � The AgentLink Roadmap

One such example is the AgentLink coordinate action that produced a roadmap
report [29] on agent based computing technologies. Many of the topics addressed
by the agent computing community are very relevant to the idea of self-adaptive
computing. As the authors highlights in their conclusions, “for agent technologies,
the objectives are to create systems situated in dynamic and open environments,
able to adapt to these environments and capable of incorporating autonomous and
self-interested components.” Agent based technologies deals with computational
entities designed in such a way that interaction among them is central. As a conse-
quence agents need to “socialize” with their counterparts by exchanging informa-
tion and have their own autonomous way of handling events. In this respect the
AgentLink community has identified three categories of technologies that are of
particular relevance for the agent system design:

The •	 organisation-level category deals with assemblies of agent entities, their
structure and how they self-organize and handle a particular mission in a collec-
tive way. The ÆTHER research did not really propose any new concepts in this
category and it is certainly an open topic.
The •	 interaction-level category deals with communication between agents at the
language and protocol level. In a way the S-NET, and run-time protocols of
ÆTHER fall into this category although with a computing approach mainly
focused on managing concurrency and computing resources.
The •	 Agent-level category includes ways to implement autonomous behaviors
and self-x features at the entity level. If the SANE concept naturally falls into this
category it exhibits one major difference: the ÆTHER entity focused on a hard-
ware based approach to provide autonomy at the SANE level when the agent
community refers to techniques such as machine learning and artificial intelli-
gence which are typically rooted in software engineering.

Several consequences can be drawn from this analysis. The first one is that future
research in computer architecture oriented toward self-x should tackle the organiza-
tion-level category described above. By studying the behavior of autonomic entities

178 C. Gamrat et al.

and their interactions within the context of the full ecosystem, apprehend them like
collective assembly right from the start rather than aggregations of individual
entities.

The second observation is in exploring more disruptive ways to implement the
interactions and negotiations between entities. Finally, a mutual cross-feed between
the AgentLink approach to autonomic computing, derived from software engineer-
ing, with the computer architecture engineering followed in ÆTHER should be ben-
eficial in future research on self-x.

7.9.2 � Self-Adaptive Computing and the ITRS Roadmap

The International Technology Roadmap for Semiconductors (ITRS) is an industry
driven document that publishes technological visions for the developments of the
semiconductor industry. The roadmap was historically focused toward silicon based
technologies (essentially CMOS), but in the last few updates has made a move
toward technologies beyond-CMOS in an effort to forecast their potentials as
replacement technologies. This is the role of the Emerging Research Device (ERD)
chapter of the ITRS. In the 2008 Document update [30], the ITRS exposes the
trends and challenges in hardware and system design for the period 2008–2022:

On the technology trends, the cell logic gate size is expected to increase almost •	
linearly from the current values (2009) of 1 mm2 (for MPU) and 0.01 mm2 (for
DRAM) down to 0.07 mm2 (for MPU) and 0.001 mm2 (for DRAM) in 2022.
That’s about an order of magnitude in the next 10 years which is likely to yield
the same increase in processor core number for example. It is foreseen that the
number of processing engines for portable consumer devices (cell phones, PDA,
GPS) will jump from about 60 in 2009 up to about 1,400 in 2022. Scaling
according to Moore’s law is thus continuing for the next 10–15 years.
On system chip trends the ITRS notes that the “More-than-Moore” approach will •	
get a boost in the next decade. This design philosophy states that an increase of
functional density can be obtained at the chip level by allowing non-digital
functionalities onboard or above the chips (e.g. analogue circuits, power con-
trol, sensors, actuators, passive components). This is clearly a trend toward more
heterogeneous Microsystems on chip. The updated ITRS roadmap also mentions
the requirement for System on Chip reconfigurability to provide flexible, recon-
figurable communication structures.
On design trends, the ITRS update highlights several important challenges that •	
will be crucial to tackle in order to design future chips. Among those: Design
productivity needs to be enhanced in order to keep design and verification costs,
Power management is getting critical and dynamic power and thermal control
will be needed, Reliability is getting problematic below 45 nm because of
atomic-scale effects and single-event upsets (soft errors). It is clear that runtime
control, reconfiguration and healing techniques will be required.

1797  AETHER: Self-Adaptive Networked Entities…

On the Emerging Research Device chapter, the ITRS 2008 updates notes that the •	
most likely beyond CMOS technology would be Carbon Nanoelectronics (e.g.
Carbon nanotubes, Graphene). If there are indications that such technologies
would be able to yield adaptive components in the form of Carbon Nanotube
transistors [31] most probably hybridized with CMOS processes [32], it is cer-
tainly very hypothetical at the moment of this writing.

From the ITRS roadmap we can see that the trend toward more complex comput-
ing systems is really continuing for at least the next decade. Heterogeneity of future
systems will be growing, with several non-digital functions embedded within the
chips and most likely included within the adaptation loops. For example power/
thermal controllers embedded within microprocessors will be built with various
digital and analogue components and will be based on adaptive loops that should be
programmed in a way transparent to the application designer.

7.9.3 � ÆTHER Research and Grand Challenges

In 2009, the European Commission ISTAG FET Working group produced a docu-
ment that gathers a number of particularly important research grand challenges for
the society and the knowledge in the future [33]. Based on the work gathered in
several proceeding reports in the period 2003–2008, the report has identified five
candidates for future research. Although all challenges are very multi-disciplinary
in the topics addressed we can see among them that a good share is very relevant to
the idea of self-adaptive and autonomic computing:

•	 Understanding Life (Life Science) – In this challenge we see opportunities in
the Neuro-ICT challenges, Personalized ICT for health aims at providing sys-
tems for real-time, autonomous and personalized health-care. The Neuro-ICT
challenge by aiming at understanding the functioning of the brain through emu-
lation or simulation would greatly enhance the understanding of learning pro-
cesses and in consequence help implementing machine learning algorithms
and adaptation behaviors within self-x and autonomous computing engines.

•	 Managing Complex Systems (Modeling & Simulation) – In this challenge, the
report explicitly mentions that advances in simulation techniques and most prob-
ably multi-scale simulation will benefit the field of “autonomous systems that
perceive the environment, understand the situation, draw conclusions, act in an
appropriate manner and cooperate with other systems”. It is also indicated that
such research will benefit the field of investigating non-von Neumann principles.
Indeed the von-Neumann paradigm seems to show its limits with a strong bind-
ing with imperative programming models. Alternatives such as neuro-inspired
principles have been proposed but so far have been used at very small scale.
Going to the next level with those principles will requires modeling and simulation
of realistically complex systems most probably in a mixed-technology and hetero-
geneous context. The same is true for investigating the collective dynamics

180 C. Gamrat et al.

behaviors of large assemblies of future interacting self-x systems and their
relation with their environment as emphasized in this research challenge:
“concepts for autonomous systems modeling: Research in this area could also
be directed to autonomous systems that perceive the environment, understand
the situation, draw conclusions, act in an appropriate manner and cooperate with
other systems.”

•	 Future Information Processing Technologies – This challenge addresses future
computing technologies such as quantum devices, novel processing devices,
nano-computing and future data storage. If any research in those areas will defi-
nitely be key enablers for the development of self-adaptive computing, the report
explicitly mentions Self-repairing and Self-evolving computational devices as
a major research challenge. Indeed and as the report accurately says: “The
research efforts in this area only scratched the surface of this problem, which will
become increasingly more important as transistors shrink and computational
devices are embedded in everyday objects or sent to outer space or inaccessible
areas of this planet, not to speak within the human body.” We could not agree
more as we effectively learned while performing the ÆTHER research, that the
problem of self-x and autonomous computing is tremendously complex and
requires much more than what has been done so far.

•	 Future problem solving technologies – This challenge aims at studying com-
pletely new programming paradigms able to cope with the complexity of both
future computing systems and future applications. The ÆTHER research very
quickly identified that self-adaptive systems would require programming para-
digms that need to be non-imperative and includes ways to express semantics
and non-functional features: this is clearly a critical research topic that needs
to be addressed. Conversely the report highlights: “It would be much more effec-
tive, if computers problems recognized problems to be solved from their obser-
vation of nature and the environment directly. This is a system automation
problem, with sensory inputs and actuator outputs to the environment, monitor-
ing it and determining that a new problem may arise, expressing/transforming it
into a solvable formulation, solving it and acting back on environment with the
solution.” This way, the self-adaptive machine system becomes a central actor of
the programming paradigm instead of being just a listener of a human centric
language. The problem solving challenge also emphasized the importance of
research on trust, reliability and security challenges which are indeed critical
when deploying autonomous computing elements.

•	 Robot Companions for Citizens – It was probably one of the first applications in
history in which the concept of a machine with autonomous behavior had been so
clearly expressed. So it is today, where robotics, whether human-like or for the
industry offer a reservoir of opportunities and challenges for self-adaptive
computation. The research challenge in robotic is therefore of prime importance
for the field of self-adaptive computing. In particular, the report indicates that
research on robots brains, human-robot interaction and robot adaptive bodies will
be critical. Included in this last challenge we read: “It is necessary to develop

1817  AETHER: Self-Adaptive Networked Entities…

electronic architectures that can support the requirements for adaptation, distribution,
and rich sensory perception, yet at the same time, be compatible with novel body
structures.” Again we note that the concepts of self-adaptation and self-x are pres-
ents everywhere in this challenge. Finally the problem of ethics is evoked in the
case of robots, but it goes far beyond robotics and can become a general issue
when designing systems with autonomous behaviors be them robots or not.

Research in self-adaptive computing are key to almost all of the five research
grand challenges identified in the context of the Future and Emerging Technologies
flagship projects. Additionally it can be seen that those grand challenges are very
inter-related with one providing enabling technologies for the others. The case of
self–x computing systems is interesting. We note that some challenges will bring
the necessary understanding tools and technologies to ultimately design and use
them: understanding life, managing complex systems, future information process-
ing technologies, future problem solving. While for others challenges they consti-
tute enabling technologies: robotics, problem solving.

The ubiquity of the self-adaptive computing research fields in all of the grand
challenges identified stresses its importance in the future of ICT regardless of the
research direction that will be actually taken. The research on self-adaptive comput-
ing could have been a grand challenge of its own since it embeds all of the charac-
teristics of the above-mentioned topics: novelty, ambition and interdisciplinary
research.

7.9.4 � ÆTHER Lessons and Open Issues

The ÆTHER technologies described in this chapter represent a first attempt at trying
to implement the required elements of a self-adaptive computing environment.
From designing adaptive loops in hardware architectures, specifying runtime sys-
tem and their protocols up to defining a language construct that tries to represent the
interaction of adaptive loops ÆTHER spans the whole chain of techniques and dis-
ciplines. The holistic and interdisciplinary approach of the program which has been
one of the strong points of the research had the disadvantage of leaving the exploration
of some of the most advanced topics to a somewhat shallow level. For example,
most of the ÆTHER technologies are just about loops, concurrency and resource
management taken from their standard meaning. However as we highlighted at the
beginning of this text, self-adaptation is more than just loops, it is more than just the
aggregation of known concepts. Self-adaptation is loops plus knowledge, the very
expression of self-awareness. This is one of the main issues that remain to be tackled
in the future: embedded knowledge management.

On the run-time part, we have seen the importance of concurrency management for
managing self-adaptation at runtime. The distributing of tasks either sequentially and/
or concurrently is key in allowing tasks adaptation between processors. We have

182 C. Gamrat et al.

shown that it was possible to devise a good enough system for managing concurrency
with the proposed SVP. We have shown that it is possible to implement the required
virtual processor and specific instructions even with quite different processor architec-
tures (RISC, FPGA). However, with the growing variety and number of heteroge-
neous processing unit on a chip as highlighted by the ITRS roadmap, it will become
increasingly difficult to devise a concurrency control system in all possible cases. And
that is probably one of the main issues that will remain: managing runtime concur-
rency with very heterogeneous processor architecture.

Software ideally should provide application designers with sufficient tools and
constructs to express their problems within their own field of expertise and their
semantics without worrying about the specific details of the underlying computing
architecture. This is separation of concerns seen at large. Through the S-NET lan-
guage we have laid down the basic mechanisms to do this but there is still some
work to do in order to include non-functional features.

Reconfigurable hardware (FPGA) has long been considered as the ideal enabling
technology in order to implement dynamically adaptive hardware circuits. Indeed,
the example implementations that we have developed using state of the art runtime
reconfigurable devices show that it is technically possible. However this hides all of
the engineering effort that need to be done specifically for each application design.
And this design effort is way too important when compared with comparable soft-
ware design times. Again, the ITRS roadmap highlighting this design productivity
shows that although current reconfigurable technology could be used to implement
run-time adaptive hardware in specific cases. It is nowhere near for general use,
unless a dramatic change and breakthrough in Reconfigurable circuits’s concepts is
made. One clear path for such an advance would be the availability of fully relocat-
able hardware circuits within a reconfigurable logic mesh.

7.10 � Conclusion

In its current state the ÆTHER project has laid the foundation of a complete frame-
work for designing and programming computing resources that live in changing
environments and need to re-configure their objectives in a dynamic way. Key con-
cepts and technologies have been developed: S-NET, SVP, SANE but a lot of inves-
tigation and opportunities for further research remains. In many ways ÆTHER has
just scratched the surface of a whole new universe. The research on self-adaptive
computing has been mostly focused on investigating solutions that derives from the
mainstream computing ecosystem. In many ways the solutions we have investi-
gated, although workable in their present states, show the limits of the “standard”
computing technologies when trying to develop self-x/autonomic systems.

A more disruptive approach to self-adaptivity spanning from the language level
down to the processing machine implementation should be explored. In order to
achieve true self-x capabilities we believe it is necessary to explore and adopt bio-
inspired mechanisms, such as neural or genetic models, mechanical and architectural

1837  AETHER: Self-Adaptive Networked Entities…

paradigms, such as in bionics or swarm architectures, and to move towards a
comprehensive approach that captures the very principles behind the success of
biological systems: biology shows everyday that it is a very successful adaptive
paradigm derived from ecological, evolutional and, more generally, informational
considerations.

References

	 1.	“IBM Research Autonomic Computing.” http://www.research.ibm.com/autonomic/
	 2.	 J. Von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, 1966.
	 3.	G.E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, 1965.
	 4.	 J. Kephart and D. Chess, “The vision of autonomic computing,” Computer, vol. 36, 2003,

pp. 41–50.
	 5.	Edsger W. Dijkstra, “On the role of scientific thought”, in Dijkstra, Edsger W., Selected writings

on Computing: A Personal Perspective, New York, NY, USA: Springer-Verlag New York, Inc.,
pp. 60–66, 1982

	 6.	Clemens Grelck, Sven-Bodo Scholz, Alex Shafarenko, “Asynchronous Stream Processing
with S-Net”, International Journal of Parallel Programming 38(1), pp. 38-67, Springer-Verlag,
Dordrecht, Netherlands, 2010.

	 7.	S-Net website, http://www.snet-home.org/
	 8.	David B. Skillicorn, Foundations of parallel programming, ISBN-13: 9780521455114,

Cambridge University Press, Cambridge, England, 1994.
	 9.	 John A. Sharp (Ed.), Data flow computing, ISBN:0-89391-654-4, Ablex Publishing Corp.,

Norwood, NJ, USA, 1992.
	10.	C.R. Jesshope. A model for the design and programming of multi-cores, in L. Grandinetti,

editor, High Performance Computing and Grids in Action, volume 16 of Advances in Parallel
Computing, pages 37–55. IOS Press, 2008.

	11.	A. Bolychevsky, C.R. Jesshope, and V.B. Muchnick. Dynamic scheduling in RISC architec-
tures. IEE Trans. E, Computers and Digital Techniques (143):309–317, 1996.

	12.	Chris R. Jesshope. MICROGRIDS: Foundations for massively parallel on-chip architectures
using microthreading. http://www.nwo.nl/nwohome.nsf/pages/NWOP_6DSBSV.

	13.	ÆTHER: Self-adaptive embedded technologies for pervasive computing architectures. http://
www.aether-ist.org.

	14.	C. R. Jesshope, “mTC an intermediate language for programming chip multiprocessors,” in
Proceedings of the Pacific Computer Systems Architecture Conference (ACSAC’06), LNCS
4186, 2006, pp. 147–160.

	15.	Apple-CORE: Architecture paradigms and programming languages for efficient programming
of multiple cores. http://www.apple-core.info/.

	16.	Clemens Grelck and Sven-Bodo Scholz. SAC: A functional array language for efficient mul-
tithreaded execution. International Journal of Parallel Programming, 34(4):383–427, 2006.

	17.	Clemens Grelck and Sven-Bodo Scholz. SAC: off-the-shelf support for data-parallelism on
multicores. In DAMP’07: Proceedings of the 2007 workshop on Declarative aspects of multi-
core programming, pages 25–33, New York, NY, USA, 2007. ACM.

	18.	Dimitris Saougkos, Despina Evgenidou, and George Manis. Specifying loop transformations
for C2mTC source-to-source compiler. In 14th Workshop on Compilers for Parallel Computing
(CPC’09), Zurich, Switzerland. IBM Research Center, 2009.

	19.	ÆTHER Deliverable D1.1.1, First research report on SANE hardware architecture, issued
31/12/2006.

	20.	Chris Jesshope, Jean-Marc Philippe, and Michiel Tol, “An Architecture and Protocol for the
Management of Resources in Ubiquitous and Heterogeneous Systems Based on the SVP

184 C. Gamrat et al.

Model of Concurrency”, In Proceedings of the 8th international workshop on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS ‘08), Mladen
Berekovic, Nikitas Dimopoulos, and Stephan Wong (Eds.). Springer-Verlag, Berlin, Heidelberg,
218–228.

	21.	L. Li, V. Narayanan, M. Kandemir, and M. J. Irwin, “Adaptive Error Protection for Energy
Efficiency”, In the Proceedings of the International Conference on Computer Aided Design
(ICCAD’03), November, 2003.

	22.	S. Lopez-Buedo, J. Garrido, and E. I. Boemo, “Dynamically Inserting, Operating, and
Eliminating Thermal Sensors of FPGA-Based Systems”, IEEE Transactions on Components
and Packaging Technologies, Vol. 25, No. 4, December 2002

	23.	S. Mondal, R. Mukherjee, and S.O. Memik, “Fine-grain thermal profiling and sensor insertion
for FPGAs”, Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS’06), pp. 4387-4390, 2006

	24.	Xilinx, “Virtex-5 FPGA System Monitor”, November 7, 2008 http://www.xilinx.com/support/
documentation/user_guides/ug192.pdf

	25.	K. Paulsson, M. Hübner, J. Becker, J.-M. Philippe, C. Gamrat, “On-Line Routing of
Reconfigurable Functions for Future Self-Adaptive Systems – Investigations within the
ÆTHER Project,” International Conference on Field Programmable Logic and Applications
(FPL 2007), pp.415-422, 27-29 Aug. 2007.

	26.	Jean-Marc Philippe, Benoit Tain, and Christian Gamrat, “A self-reconfigurable FPGA-based
platform for prototyping future pervasive systems”, In Proceedings of the 9th international
conference on Evolvable systems: from biology to hardware (ICES’10), Gianluca Tempesti,
Andy M. Tyrrell, and Julian F. Miller (Eds.). Springer-Verlag, Berlin, Heidelberg, 262–273.

	27.	L. Zhang and C. Jesshope, “On-Chip COMA Cache-coherence Protocol for Microgrids of
Microthreaded Cores”, Eds. Bouge et. al., Proc Euro Par 2007 Workshops, LNCS Volume
4854, Springer, pp 38-48, 2007.

	28.	Martin Danek, Jean-Marc Philippe, Petr Honzik, Christian Gamrat and Roman Bartosinski,
“Self-Adaptive Networked Entities for Building Pervasive Computing Architectures”,
Evolvable Systems: From Biology to Hardware, Lecture Notes in Computer Science, 2008,
Volume 5216/2008, 94–105

	29.	M. Luck, P. McBurney, O. Shehory, S. Willmott and The AgentLink Community, “Agent
Technology Roadmap, a roadmap for agent based computing”, September 2005

	30.	The International Technology Roadmap for Semiconductor, ITRS Update 2008, http://www.
itrs.net/, 2009

	31.	G. Agnus et al., “Two-Terminal Carbon Nanotube Programmable Devices for Adaptive
Architectures,” Advanced Materials, vol. 22, no. 6, pp. 702-706, 2010.

	32.	Akinwande, D. et al. “Monolithic Integration of CMOS VLSI and Carbon Nanotubes for
Hybrid Nanotechnology Applications.” Nanotechnology, IEEE Transactions on 7, 636–639
(2008).

	33.	The Information Society Technologies Advisory Group, “European Challenges and Flagships
2020 and beyond”, July 2009.

	2.pdf
	Reconfigurable Computing
	Preface
	Contents
	Contributors

	fulltext.pdf
	Chapter 7: AETHER: Self-Adaptive Networked Entities: Autonomous Computing Elements for Future Pervasive Applications and Technologies
	7.1 Project Partners
	7.2 Introduction
	7.3 Self-Adaptation
	7.4 Self-Adaptation from the Software Engineering Point of View
	7.5 Separation of Concerns
	7.6 Self-Adaptation from the System Engineering Point of View
	7.6.1 Granularity of Units of Work
	7.6.2 SVP – An Abstract Model of Concurrency
	7.6.3 Implementations of SVP

	7.7 At the Hardware Level: Self-Adaptive Networked Entities
	7.7.1 SANE Implementation, the Case of Reconfigurable Hardware
	7.7.2 SANE and Future Technologies

	7.8 The ÆTHER Computing Framework: Implementation and Applications
	7.8.1 Design Workflow
	7.8.2 Implementation and Applications

	7.9 Open Issues and Research Opportunities
	7.9.1 The AgentLink Roadmap
	7.9.2 Self-Adaptive Computing and the ITRS Roadmap
	7.9.3 ÆTHER Research and Grand Challenges
	7.9.4 ÆTHER Lessons and Open Issues

	7.10 Conclusion
	References

