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ABSTRACT

This paper presents a detailed analysis of the CMOS
short-circuit power dissipation, on the basis of an
elementary CMOS inverter. Accurate, analytical expressions
for the inverter output response to an input ramp are
derived, which result to an improved formula for the
calculation of the short-circuit power dissipation. This
improvement is due to the fact that the new derivations
take into account the complete expression of the short-
circuit current.

1. INTRODUCTION

Recently, the growing demand for low-power portable
communications and computing systems, has elevated the
power consumption as one of the most critical parameters
in many chip designs [1]. Thus, it is important to precisely
estimate the power dissipation during the design phase in
order to meet the power specifications without a costly
redesign process. Analytical expressions for modeling the
power dissipation of basic circuits, in a computationally
efficient way, which can be incorporated in switch and logic
simulators, are required.

Power dissipation in CMOS circuits consists mainly of
two parts, the dynamic and the short-circuit power
dissipation. Dynamic dissipation caused by charging/
discharging the capacitive loads is relatively easy to be
estimated. Short-circuit power dissipation, which in some
designs may be represents a significant percentage (10-
20%) of the total dissipation, appears during gate switching
when the pull-up and pull-down networks of a CMOS gate
are simultaneously ON, resulting in a direct current path
between supply and ground. Expressions for describing
accurately the short-circuit dissipation even though for
simple gates is difficult to be derived. The emphasis of this
work is on calculating analvtically the short-circuit
dissipation of a CMOS inverter. To do this, analytical
expressions of the output waveform, for the regions of
operation where short-circuit current exists, must be
derived. The problem is that an analytical solution of the
differential equation describing the inverter operation in
these regions, cannot be found and some approximations
must be used. The first analytical expressions for the output
waveform including the effect of the input slope was
presented by Hedenstierna and Jeppson [2], where the
influence of the short-circuit current was neglected. These
expressions was extended by Kayssi et al. [3] for the case of
exponential input waveform, but still only for negligible
short-circuit current. More recently in [4], the differential
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equation describing the discharge of the load capacitor was
solved for a rising input ramp considering the currents
through both transistors. However, in the case where the
NMOS device is saturated and the PMOS device is in the
linear region, the quadratic term of the current through the
PMOS device was neglected. Vemuru and Thorbjornsen [5]
derived an expression for the output waveform, which
includes this term of the PMOS current, using a power
series to approximate the solution of the differential
equation. However, only the first five terms of the series
were calculated, and a recursion form for the calculation of
higher order terms in order to obtain better accuracy, was
not considered.

In this paper, analytical expressions for the output
waveform, which overcome the weaknesses of previous
works are derived, in order to find a formula for the
calculation of the short-circuit dissipation for a CMOS
inverter. A simple long-channel, bulk-charge model [6] has
been chosen since short-channel models [7] cannot be
handled analytically, if the current through both transistors
is considered, However, the experience derived from the
results using a simple model could be expanded to more
advanced models. The first work on the calculation of the
short-circuit dissipation of a CMOS inverter was presented
in [8] where zero load capacitance, and current waveform
which is mirror symmetric about a central vertical axis, were
considered. More recently, in [2] a formula for the
calculation of the short-circuit energy dissipation without
the restrictions of [8] was derived. However, as mentioned
above the expression of the output waveform used there,
was derived with negligible short-circuit current. Here, it is
the first time that a formula for the calculation of the short-
circuit power dissipation, which considers the complete
expression of the short-circuit current, is introduced.

2. CMOS INVERTER SWITCHING ANALYSIS

The presented analysis is based on the long-channel,
bulk-charge transistor model [6]. The derivations presented
in the following are for a rising input ramp,

0, t<0
V,=1{Vpp(t/t), 0stsz (1)
Vip t21

where r is the input rise time. However, similar results can
be obtained for falling input ramp. The differential equation
which describes the discharge of the load capacitance Cp
for the CMOS inverter of Fig. 1, with the assumption that



there is no gate-drain capacitive coupling, is:

dv
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Since, short-circuit power is dissipated when the NMOS
and PMOS devices are simultaneously ON, we examine the
case in which the condition Vpy £V, £ Vpp-| Vip| holds
for the input voltage, where Viy and Vip are the NMOS
and PMOS threshold voltages, respectively. If we consider
input ramps such that the NMOS device is still saturated
when the input voltage ramp reaches the value Vpp- | Vop |,
which holds for the most practical conditions in VLSI
circuits, then there are two different regions of operation for
the CMOS inverter. In the following, after normalizing
voltages with respect to Vp,ie. upn= Vio/ Vop, tow=
Vou / Vop , n = Vin/ Vpp , p =|Vppl/ Vpp , and
normalizing time with respect to input rise time, x = t /1,
we obtain the differential equations for each region of
operation.

Region 1, n < x < x3: The NMOS transistor is saturated

and the PMOS transistor is in the linear region. xp is the
normalized time value where the PMOS device enters in

the saturation region, i.e. Vpsp < (Vgsp + |Vipl ) / (146,),
and is determined by the PMOS saturation condition:

(@)

X,+p—1
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where ug is the normalized output voltage value when
PMOS device saturates. The differential equation (2), using
the current equations of the long-channel, bulk-charge
transistor model [6], becomes:

du Kk Vo, T 2
C, out _ _ _CNVDD (x—n)
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where ky, kp are the NMOS and PMOS transistor
transconductances, and &, &, are the Taylor series
expansion coefficients of the bulk charge. The first term of
the right part in (3) corresponds to the NMOS saturation
current, and the second term corresponds to the PMOS
current during its linear region, which is the short-circuit
current. The above differential equation is a non-linear
Riccati equation [9] which cannot be solved analytically, if
a particular solution is not known. Thus, a power-series
expansion method based on [10] has been used, resulting
to the following recursive expression:

uy, =1- 3 1, (x=n)" (4)
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The power-seties expansion of equation (4) is used for
small values of A, (A, < 10 ), which covers the most
practical cases in VLSI circuits. The second term in the
braces for the case of k>6 corresponds to the influence of
the quadratic current term of the PMOS device which was
neglected in [4]. This is inserted to the output waveform
after the sixth order coefficient. For the calculation of the
short-circuit energy dissipation in [2], an expression of the
output waveform with negligible short-circuit current was
used. However, it can be observed in Fig. 2 that the
influence of the PMOS current, which is included in
expression (4), results in a significant voltage difference at
the output node of the CMOS inverter.

where, A

Region 2, x; <'x < 1-p: Both transistors are saturated.
In this region, the differential equation (2) becomes:
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kp Vi T 2
= —P 7DD 5
dx | 2(1+5 ) * (x=1+p)".5)

2(1+8 )

where the two terms of the right part are the NMOS and
PMOS saturation current respectively, as given from the
current equations of the long-channel, bulk-charge
transistor model. The analytical solution of the above
differential equation is:
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where the integration constant c, which is inserted to ensure
continuity with respect to region 1, is given by:

kyVppt ko Vo1

N 7DD - & —1+p) (7
6C, (145, 6C, 145, e 1D
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where (ug, Xz) is the starting point of region 2,

3. CMOS SHORT-CIRCUIT POWER DISSIPATION

It is known that the short-circuit energy dissipation per
transition, is given by [2],[8]:

Ee =V, j Ioodt =V, jlp dt . (8)

The application of the Kirchoff’s current law to the output
node of the CMOS inverter (Fig. 1) vields:

k V72 V., C, du
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The short-circuit energy dissipation per transition may then
be written as:

(9)
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where ugy [I-p] is the value of the normalized output
voltage when the inverter leaves region 2 (then x=1-p),
and ugy [n]=1 as it is the normalized output voltage for
Vo= Vin. Using equations (6) and (10) the short-circuit
energy dissipation per transition is written as:
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It can be observed from equation (11) that for the analytical
calculation of the short-circuit energy dissipation per
transition, the integration constant ¢, must be determined.
To do this, it is cleatly from equation (7) that the calculation
of the values x5 uy is required. These values satisfy the
PMOS saturation condition, expressed by equation (12), as
it has already been mentioned,

X+ p—1
1+3,

u,, =1+

ou

, (12)

and they can be found by solving the system of equations
(4) and {12). Since, the order of equation (4) is high, the
system of equations cannot be solved analytically. Hence,
in the following an approximation for the calculation of xg,
Uz is infroduced, which is illustrated in Fig. 3.

The analytical solution of the differential equation (3), if
negligible PMOS current is assumed, is:

(x—n)® = 1-f,(x~n)® (13)

uout =

From equations (12), {13) the normalized time x"; in which
the inverter entered region 2, with the assumption of
negdligible PMOS current, is derived:

,_n_(2/3) E¥s
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where, E =4/12+81D (n+p-1)> +9+D (1-p-n),

V3
(14)

and D:(1+5p)f3 .

The next step of our approximation is to determine the
tangent of the output waveform expressed by (4), at the

point which corresponds to X5 (see Fig. 3). This tangent is
expressed by the following equation:

(15)

U, =ax+b,

where, a= %(x;) =- Z kf, (x,—n)7 |
dx —

b=1- ax, —2 f, (x3—n)".

k=3

and,

From equations (12) and (15) an accurate approximation
for xo is derived:

_(148,)b=3,-p

(16)
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By substituting x5 in equation (4) the normalized output
voltage uy is calculated. After the calculation of x5, uz , a
formula for the calculation of the short-circuit power
dissipation (Psc) of a CMOS inverter can be derived. Using
equation {11) P is written as:
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where fori is the switching frequency. The factor 2 in (17)
comes from the fact that the short-circuit current flows twice
per one switching cycle (a switching cycle is two logic level
transitions, high-to-low and low-to-high). This, of course,
holds for symmetrical inverter, i.e. ky=kp and n=p . Note,
that the ermror introduced by our approximation of the
values xz, ug, in the calculation of the short-circuit power
dissipation for k=16, is from 0.05x10 ® % (for Ap=1.5) to
0.03 % (for A,=9.5).

The short-circuit energy dissipation percentage of the
capacitive energy dissipation per transition, is plotted as a
function of A, in Fig4. The solid curve, noted as
“analytical (2)”, has been derived using equation (11), for
n=p=0.17, kn=kp=03 mA/ V* and 6,=5,=02 in order
to achieve symmetric falling and rising output waveforms.
The dashed curve (analytical (1)} has been derived using
the formula for the calculation of the short-circuit energy
dissipation proposed in [2], where negligible short-circuit
current is assumed in the expression of the output
waveform. It can be observed, that the presented approach
gives results closer to those derived from long-channel level
3 SPICE simulations (curve with symbols), thus it is more
accurate from the previous approach of {2].

4. CONCLUSION

In this paper an improved formula for the calculation of
the short-circuit power dissipation in a CMOS inverter, has
been derived. In order to achieve that, analytical
expressions of the CMOS inverter output ramp response,
for the operation regions where short-circuit power is
dissipated, have been derived. These expressions take into
account the complete form of the short-circuit current.
Finally, it has been shown that the proposed formula for the
calculation of the CMOS short-circuit power dissipation,
gives more accurate results than those of previous works.
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Fig. 4: Comparison between the short-circuit energy
dissipation percentage of the capacitive energy
dissipation, derived from SPICE and those derived
from analytical expressions.



