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ABSTRACT

This paper introduces an accurate, analytical
timing model for the CMOS inverter. Analytical
output waveform expressions for all the inverter
operation regions and input waveform slopes are
derived, which take into account the complete
expression of the short-circuit current and the gate-
to-drain coupling capacitance.

1. INTRODUCTION

In the recent years the circuit modeling research
focused on the delay model development for
CMOS circuits. The emphasis of this work is on
evaluating analytically the propagation delay of the
CMOS inverter.

Analytical expressions for the CMOS inverter
output waveform and the propagation delay,
including the effect of the input waveform slope,
was presented in [1], [2], where the influence of
the short-circuit current was neglected. More
recently in [3], the differential equation describing
the discharge of the load capacitor was solved for
a rising input ramp considering the current through
both transistors. However, the output waveform
wasn’t completely expressed analytically, because
the integration constant between the region where
the PMOS device is in the linear region and the
region where the PMOS device is saturated, is not
determined analytically. This results to a semi-
empirical model for the propagation delay, using
simulation results and numerical methods. Sakurai
and Newton [4] presented a closed-form delay
expression for the CMOS inverter, based on the a-
power law MOS model which includes the carrier
velocity saturation effect. However, this model
requires the empirical velocity saturation index
(@), and other model parameters to be recomputed
for each transistor width. Moreover, the short-
circuit current is neglected and the delay
expression is valid only for fast input ramps.

In this paper, analytical expressions for the
output waveform, which overcome the weaknesses
of previous works, are derived. Based on these
expressions, accurate, analytical formulas for the
evaluation of the propagation delay of the CMOS
inverter for all the cases of input ramps, are
produced. To achieve better accuracy, the short-
circuit current and the gate-to-drain capacitive
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coupling, are taken into account. The simplified
bulk-charge MOS model {5] has been chosen,
since short-channel models is very difficult to
handle analytically, when the current through both
transistors, and all the cases of input ramps, are
considered. However, the experience derived from
the results using a simple model could be
expanded to more advanced models.

2. OUTPUT WAVEFORM ANALYSIS
The derivations presented in the following are
for a rising input ramp,
. 0, t<0
Vip ={ Vop-(t/7), OstsT: 1)
A t2t
where 1 is the input rise time. However, similar
results can be obtained for falling input ramp. The
differential equation which describes the discharge
of the load capacitance C;, for the CMOS inverter
of Fig.l, taking into account the gate-drain
capacitive coupling (Cy) is,
dv dV; dv
o, Howt — ¢, (Lo Do )yi-1,- @
The drain current of the devices is given by the
following equations of the long-channel simplified
bulk-charge MOS model [5],

Ip=0, Vgs < Vr, Cutoff region
1+3
Ip = B [(VGS“VT)VDS" ( 2 ) Vgs] ’
Vs € Vsar Linear region

ID = 2(1‘15) (VGS—VT)Z ?

Vps > Vsar, Saturation region

where Vg, 1 =Yas= V1 s the saturation voltage

of the device, Vy is the threshold voltage, B is the
device gain factor, and 8 is the slope of the first
order term at the Taylor series expansion of the
MOS bulk-charge equation.

In order to give a complete analysis, three cases
of input ramp are considered. First, the case of
very fast input ramps where the PMOS device is
turned off after its linear region, without enters
saturation, is studied. Since the input ramp will
reach its final value with the NMOS device either



in saturation or in the linear region, two more cases
of input ramps, are considered. For fast input
ramps, the NMOS device is still saturated while
for slow input ramps the NMOS is in its linear
region, when the input voltage ramp reaches its
final value. In the following, normalized voltages
with respect to Vpp, i.e. Uy =V, /Vpp =t/ 1,
Yo = Vou / Vpp, 0= Vin/ Vpp, p=i Vrel/ Voo,
and the variable x =t/ <, are used.

Case A: As mentioned above, the first case to be
studied is for very fast input ramps such that the
PMOS transistor is turned off after its linear
region, without enters saturation (Fig.2). Also, in
this case the NMOS transistor is still saturated
when the input voltage reaches its final value.
Region 1 (0 <x <n): The NMOS transistor is off,
and the PMOS transistor is in the linear region. In
this region the differential equation (2) becomes a
non-linear Riccati equation [6] which cannot be
solved analytically, if a particular solution is not
known. Thus, a power-series expansion method [6]
has been used, resulting to the following solution,

Uo‘":l—kaXk ’ (3)
k=1
Ap
Where f1=-—cm, f2 =—--——-(l—p)f1;

A (J+8 ) k
fk="k—p{[fk—2_(l—P)fk—l] 2 fk—:—l}'
for k>2, . =___CM_., M

™ CL+Cp P CL+Cwm

The second term in the braces for k>2 corresponds
to the influence of the quadratic current term of the
PMOS device which was neglected in [3].

Region 2 (n $x 5 I-p): The NMOS transistor is
saturated and the PMOS transistor is in the linear
region. In this case, the power-series method
results to the following recursive expression,

- X
Ugye =Upp+1l-— zgk (x-n) 4
k= 1
where g, =-c.,, g, ,.__.__(1 p—n),
A

g3 =

A (1+6 )
Pl (j-p— P/2,
6(1 + an) + 3 |:g1 ( p ﬂ)g2+ 2 g1

A (1+8,) k=2
8x =—kp‘{[gk-z‘(1‘P“ﬂ)gk—x}+ 2 2 8i Bi~i-1 [’
i=l

— Bn Vpp * . - k
for k>3, A, _E::_C_M_, and y, = Z’lfkn
is the integration constant which is inserted to
ensure continuity with respect to region 1.

Region 4 (1-p < x 5 1): The NMOS transistor is
saturated and the PMOS transistor is off. It can be
observed in Fig.2 that for very fast input ramps

-

(case A), the inverter doesn’t pass from region 3,
because the PMOS device is not saturated. The
analytical solution of the differential equation (2)
in this region is,

Ugyt = U4 +Cpy X (x- ﬂ) » (5)

A,
6(1 + 8 )
where the integration constant uy, which is
inserted to ensure continuity with respect to region
2, is given by,

A,
U24 = Ugipy = Cm (1~ P)+ s(iesy TP n)’

where Ugop) = upp+1- z g (1 - p- n)k is the
k=1

value of the output voltage in which the PMOS
device is turned off (when x=1-p).
Region 5A (1 £ x S x,,): The input ramp has
reached its final value with the NMOS transistor
still in saturation and the PMOS transistor off. x4,
is the normalized time value where the NMOS
device leaves saturation, i.e. Vps.nmos = VSAT-NMOS-
The analytical solution of (2) becomes,
An(i-n)® A,(1-
6(1+38,) 201+ 5 )
Region 6 (x 2 x4, ): The NMOS device enters in
its linear region, and the PMOS is off. In this
region the analytical solution of (2) is,

2Ugaen
1+ eAn (x=xsatn )(1-n) ’ M

x-1).(6)

Uy =Ug¢+Cpy—

Youe =

where Uy, = (1-n) / (1+68,), and X, is calculated
from equation (6) for Ugy =Ugem.

Case B: In the second case we study fast input
ramps such that the PMOS transistor enters
saturation after the linear region, and the NMOS
transistor is still saturated when the input ramp
reaches its final value (Fig.2). The expressions of
the output waveform for regions 1, 2 are the same
with those of case A. Note, that the right limit of
region 2 in this case is the normalized time value
(Xsup)» where the PMOS device enters the
saturation region, i.e. Vps.pmos = Vsar-pmos-
Region 3 (X, < x < I-p): Both transistors are
saturated. The analytical solution of (2) is,

3
Ugyt = Ug3+Cy X (X n)

.
6(1+35,)
A
P (x— 1 + p) , 8)
6(1 +38 p)

where the integration constant up;, which is
inserted to ensure continuity with respect to region
2, is given by,

An 3
W23 = Usatp ™ Cm Xsatp +m_)(xsatp— n)
n

Ap B 3
_Z(-;—sp—)(xmp 1+p) .
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It is clear that for the derivation of an analytical

expression for the output waveform the integration

constant uy; must be determined. The values Xgp,

Ugyp satisfy the PMOS saturation condition,

11+x«3 p ' ©)
P

Ugye =1

and they can be found by solving the system of
equations (4) and (9). Since, the order of equation
(4) is high, the system of equations cannot be
solved analytically. Hence, in the following an
efficient method for the calculation of Xuyp , Usarp iS
introduced, which is illustrated in Fig.3. Note, that
the integration constant between the region where
the PMOS device is in the linear region and the
region where the PMOS is saturated, is not
determined analytically in [3], where the
propagation delay calculation is based on semi-
empirical estimation of this integration constant
using simulation results and numerical methods.
The analytical solution of the differential equation
"(2) in region 2, if we neglect the PMOS current is,

’ ’ A
UGy = Uiz+Cp X -——————6(];‘5“) (x— n)3, (10)

where u{, =1-cmn- D fy nk . From equations
k=1
(9), (10) the normalized time X'y, in which the
inverter is entered region 3, with the assumption of
negligible PMOS current, is derived. The next step
of our method is to determine the tangent of the
output waveform expressed by (4), at the point
which corresponds to X' (Fig.3). This tangent is
expressed by the equation:
Ugy =ax+b, (1

dugy

dx

where a= )k_l

- =— k XL =1
X=Xsatp kEI 8k (Xsarp

and b=1+uj3— axgy — Z 8k (Xsap~ n)
k=1

From equations (9) and (11) an accurate
approximation for X, is derived,
(1+3,) b-8,-p

I-a(l+8,)
By substituting Xy, in equation (4) the normalized
output voltage ug is calculated, The expressions
of the output waveform for the regions 4, 5A, 6 are
the same with those of case A, if we substitute the
integration constant uy with the constant uy;.
Case C: In the third case slow input ramps, such
that the NMOS device leaves saturation while the
input voltage is still a ramp are studied (Fig.2).
The output expressions for the regions 1, 2, 3 are
the same with those of the previous case.
Region 4 (I-p S x S x4, ): The NMOS transistor
is saturated and the PMOS transistor is off. The

(12)

Xsatp =
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solution of the differential* equation which
describes the operation of this region, is given by
equation (5), after the substitution of the constant
uy with the constant uz;. The normalized time
value Xq, is calculated from this equation, for
Uy = (x-n)/ (1+8,), which corresponds to the
NMOS device saturation line (Fig.2).

Region 5B (x4, Sx £1): The NMOS transistor is
in the linear region and the PMOS transistor is off.
Neglecting the charging cumrent through the
coupling capacitance an approximated solution of

the differential equation (2) in this region is,
27 _2
L. =Y

Ay » (13)
_ 3{2—1?- (crf[y] —erfl¥ ])

(1+8,,)"l

Uout =

{

Y satn e)’satn

A A
where y = ’ 2" (x—= 1) Ysam =1’Tn'(xsam‘")’ and

erf {y], erf [yaw] are the error functions of ¥, Yam
respectively.

Region 6 (x = I): The input ramp has reached its
final value, the. NMOS device is still in the linear
region, and the PMOS device is off. The solution
of the differential equation which describes the
operation of the inverter in this region is,

2ugp
= , (14)
out I+ (zusam_ U[”)Um eAn {(x-1)(1-n)

where U, =(1-n) / (1+8, ), and uy;, is the value of
the normalized output voltage when the input ramp
has its final value. uy;, is calculated if we set x=1 in
equation (13).

3. PROPAGATION DELAY

The fall propagation delay at the 50% voltage
level may be written as,
T

tPHL =tos™ 5 (15)
where tos= Xgs* T and x5 is the normalized time
value when ug, =0.5.

Cases A & B: In the cases of very fast and fast
input ramps the output voltage reaches the 50%
level (uoy = 0.5), when the inverter operates in
region 6. The normalized time value Xxgs is

“evaluated from equation (7) for us,=0.3,

(16)

n[dugyn —1]
Xqs = X+ ———— 0 .
Q.5 satn 7 A, (I _ n)

Case C: In the case of slow input ramps the

- condition ug, = 0.5 can occur in region 6 or in

region 5B. For 6 < A, < 8 the output voltage
reaches the 50% level when the inverter operates
in region 6, while for 8 < A, < 14 in region 5B. In
the first case the normalized time value Xqs is
evaluated from equation (14) for ug,=0.5,



-1
tn [u[l](4usmn"I)(zusam"“[l]) ] an
A, (1-n) B

For the evaluation of xy5 when the output voltage
reaches the 50% level in region 5B, a linear
approximation of the output voltage is used in the
vicinity of Ugy = 0.5,

Ugy =CX+d, (18)

Xo5 = 1+

du gy,
X=Xgatn

where ¢ = and d = ug,— CXgy -

By setting u,,=0.5 in equation (18) an accurate
approximation for X¢ 5 is derived,

Xgs = O.SC d ; 19
By substituting xgs from equations (16), (17), (19)
in equation (15) the fall propagation delay of the
inverter for all the cases of input ramps, is
evaluated. The error which is introduced to the
propagation delay due to the approximation in the
calculation of X, for k=13 is up to 102 %, while
in the calculation of xg5 (equat. (19)) up to 1.2 %.
The theoretical fall defay of the inverter, is plotted
as a function of A, in Fig.4 (solid curve). These
results have been produced for an inverter with
B.=P,=0.5mA/V?, C =0.45pF, ¢y, =0.1, n=p=0.17,
and 9,=8,=0.2, operating at Vpp=5Volts, with
input rise times from 0.2nsec (A,=A,=1) to 2nsec
(An=A;=10). It can be observed, that the presented
analytical method for the evaluation of the inverter
propagation delay gives results very close to those
derived from long-channel level 3 SPICE
simulations (dashed curve).

4. CONCLUSION

In this paper an accurate, analytical method for
the evaluation of the propagation delay in a CMOS
inverter, has been presented. In order to achieve
that, analytical expressions of the inverter output
waveform which take into account the complete
form of the short-circuit current, and the gate-to-
drain coupling capacitance, have been derived.
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