Microprocessing and Microprogramming 39 (1993) 251-254 251

North-Holland

VLSI Implementation of Digit-Serial Arithmetic Modules

L. Bisdounis®, D.E. Metafas®, A.M. Maras®, C. Mavridis*

*VLSI Design Laboratory, Department of Electrical Engineering, University of Patras, 26110 Patras, Greece.

®Department of Electronics & Computer Engineering, Universtity of Crete, 73100 Chania, Crete, Greece.

This article describes an implementation of arithmetic modules which is based on the transmission of arithmetic
data serially one digit at a time. For some applications bit-serial architectures may be too slow, and bit-parallel
architectures may be faster than necessary and require too much hardware. The desired sample rate in these
applications can be achieved using the digit-serial approach.

1. INTRODUCTION

The digit-serial techniques are ideal in
Digital Signal Processing as they offer the flexibility
which is needed in order to exploit the potential of
the available technology. Bit-serial implementations
process one bit at a time and are suitable for low
speed applications such as communications and
speech processing [1]. On the other hand very high
sample rates in radar, video and image processing
call for fully bit-parallel implementations which
process all input bits of a word or sample in one
clock cycle [2].

In digit-serial computations, data words are
divided into digits and transmitted serially one digit
at a time between operators. Architectural synthesis
based on digit-serial modules offers the structured
design approach needed in order to find the best
solution for the application that concerns the
tradeoffs between cost, speed, efficient area
utilisation, throughput, clock distribution, I/O pin
limitation and power dissipation. Hartley et al. [3]
explored some digit-serial structures, while Parhi [4]
proposed an approach to the design of digit-serial
arithmetic modules that transforms a bit-serial
structure into a digit-serial structure using an
unfolding transformation algorithm. Although the
approach presented in [4], eased the complexity of
the processor design procedure, its major drawback
is that the designer has not control over the
architecture of the final digit-serial structure,
because it is completely specified by the initial
choice of the bit-serial realisation and the application
of the unfolding algorithm, with the corresponding
unfolding factor.

In this paper the architecture of digit-serial

add/subtract cell and the architectures of very
efficient digit-serial arithmetic modules of
multiplier, divider and square root extractor are
presented. Also, adaptations of the algorithms are
proposed in order to be used in digit-serial
implementations. The advantage of the presented
design procedure is its simplicity and that it will
allow the designer to find the best solution in a
methodical manner. Also, these arithmetic modules
are highly pipelined in order to achieve high
throughput.

2. DIGIT-SERIAL ADD/SUBTRACT CELL

A basic digit-serial operator is the digit-
serial adder/subtractor shown in figure 1. It is
assumed that the digit size is N. The two operands
A and B are fed one digit at a time to the cell. The
operation (add/subtract) is done N bits at a time,
with the carry rippling from one full-adder to the
next. The delayed carry-out from the bottom of the
cell, is returned to the top to be fed back into the
first full-adder, during the next clock cycle, when
the next digits of the inputs have arrived. The carry-
out also gets an initial value on the least significant
digits of the inputs. This is ensured by the signal
A/S, which also controls the inversion of the B input
bits. There is one control signal C_LSD which is
high during the least significant digits of the inputs.
This signal is used to define, when the carry-out
gets an initial value.

To do addition, A/S is set to zero causing
the carry to be reset to a zero value and addition to
be performed in a regular manner. To do
subtraction, A/S is set equal to one, causing the B
input to be complemented and a logic one to be

252 L. Bisdounis et al.

— S
—— S2
— Sa
An
By —— Sw
C_LsSD
AI s CARRY_OUT

Figure 1: Digit-serial Add/Subtract cell

carried into the initial carry-in position, resulting in
a two’s complement subtraction of B from A.

3. DIGIT-SERIAL MULTIPLIER

In this section a digit-serial multiplier
implementation, with fixed coefficient, is presented
[4],[5],[6]. Consider the multiplication of an n-bit
integer I with a 4-bit coefficient A. The size of I is
variable, while the size of A is fixed. The
multiplicand I, the coefficient A (multiplier), and the
(n+4)-bit product P are represented as:

I=1_,...1I, , A=A,A,AA, , P=P,,...P P,
respectively. The digit-serial multiplication with a
digit size of two bits, uses the architecture shown in
detail in figure 2. The number of rows of full-adders
is set equal to the number of bits of the multiplier A
minus one, while the number of columns in the
basic circuit, to the digit size. The idea in the
proposed architecture is that the partial products of
the multiplication are divided into equally sized
groups, and the carry ripples horizontally in the next
group of partial products. The bits of the
multiplicand are supplied one digit at a time, starting
with the least significant digit, whereas the bits of
the multiplier are supplied in parallel form. In order
to increase the throughput of the multiplier, the
architecture is highly pipelined.

Since there is no gap between successive
words of data, a zero digit is inserted after each
word. In this way, it is also achieved to get from the
output the most significant bit of the product at the
end of the multiplication operation. In order to
increase the digit size, all we have to do is to add
columns in the basic circuit. In figure 2 the parallel-
to-digit-serial and the digit-serial-to-parallel
interfaces are also shown.

Figure 2: Digit-serial Multiplier

4. DIGIT-SERIAL DIVIDER

In the following, the non-restoring division
algorithm which has been adopted for digit-serial
implementation and the architecture for digit-serial

implementation of two’s complement division are
presented {3],[6].

4.1. Non-restoring Division Algorithm:

Consider two binary fractions A and B. A
is the divinded, B the divisor and Q=A/B the
quotient. We assume that |A| < |B| and B#0. The
flow-chart of the algorithm used, is given in figure
3. Division process requires controlled add-subtract
(CAS) operations. Whether the next operation is an
addition or subtraction, is controlled by the result of
the current operation.

In the case that A, B are of different sign,
the first operation is an addition, otherwise the first
operation is a subtraction. The number of bits of the
quotient is equal to the times the second loop is
performed. The procedure ends when i reaches the
number of bits (k) desired in the quotient Q.

4.2. Digit-serial Divider Implementation

The architecture of the digit-serial divider,
which uses least significant digit (LSD) first data
format, is shown in figure 4. It is assumed that the
word size is W, the digit size is N, where W is
constrained to be an integer multiple of N. The first

VLSI implementation of digit-serial arithmetic modules 253

[A=A+B] [A=A-B]

A= Ashifted 1 bit left
q=carry of the add/subtract
operation

Figure 3: Non-restoring Division Algorithm

part of the circuit detects whether B<0, and if it is,
changes the sign of both A and B in order to ensure
that B=0. Then the division is continued by
repeatedly adding or subtracting B from A with the
decision to add or subtract being determined by the
carry of the previous operation.

B

=
[} A-(DA-IMCZOO r>—pmer O-f FMEC>IPT]

Figure 4: Digit-serial Divider
The presented architecture is fully
pipelined. The cells denoted as "W/N X REGN",

consist of W/N simple registers of N bits each, used
to move the data in the pipeline. In order to have
the serial transmission, one digit at a time, of the
data words, two multiplexers with W inputs and N
outputs are used at the inputs of the circuit. The
ADD/SUB cells which have been presented in
section 2, perform controlled addition or subtraction
of W bits numbers in a digit-serial manner. In these
cells, the required control signals are provided by a
control unit (CONTROL GENERATOR) which is a
circular shift register, with only one flip-flop being
set at any clock cycle while all others are cleared.
Each contro! signal is high for exactly one clock
cycle, every W/N clock cycles. In this way, only
W/N different control signals are required, because
of periodicity. For simplicity, in figure 4 we use the
convention that the input shown on the left of each
ADD/SUB cell is the A/S input, and the input
shown on the right is the C_LSD input. The cells
denoted as < <, are one bit left shifters. Finally, in
order to get the total quotient in a serial format, a
parallel-to-serial interface is used.

5. DIGIT-SERIAL SQUARE ROOT
EXTRACTOR
This section describes the non-restoring
square root algorithm which has been adopted for
digit-serial implementation and presents the
architecture for digit-serial implementation of two’s
complement square root operations.

5.1. Non-restoring Square Root Algorithm
Consider two positive binary fractions A
and Q such that Q=yA . We call Q the square
root of A. Note that:
A=0.a,a,...a, , and Q=0.q,q,...q, .
The flow-chart of the non-restoring square root
algorithm is illustrated in figure 5. As the division
process, square root process requires controlled add-
subtract (CAS) operations. Whether the next
operation is an addition or subtraction, is controlled
by the carry of the current operation [6],[7]. The
first operation is subtraction. The number of bits of
the operand D is set equal to the number of bits of
A, by appending 2n-2 zeros to the right of it. The «
most significant bits of the operands D;,D,...D,,,
are zeros. Also, the number of bits of these
operands is set equal to the number of bits of A by
appending 2(n-x)-2 zeros to the right of them. The
number of bits of the result (Q) magnitude, is equal

254 L. Bisdounis et al.

to the times the loop of the algorithm is performed.
This is the number of bits pairs of A. The procedure
ends when x becomes equal to n.

A=A shifted 1 bit left

2n-2
Dg=010...0

[A=A-00 |
[Cx=1]
S
A>0

YES
carry=0 2 carry=1 I

. St Ex=0i L, . Set@e=1;

Dy=0..04,95 ...q,110..0

2(n-x).2

D= 0..00,q,..9,010..0

..0n

Figure 5: Non-restoring Square Root Algorithm

5.2. Digit-serial Square Root Implementation

The architecture of the digit-serial square
root extractor is shown in figure 6. Consider that the
word size is W and the digit-size is N. The word
size W must be an integer multiple of N. A number
of "W to N" multiplexers and "W/N X REGN"
specific registers are used for the reasons which
have been presented in sub-section 4.2.

The first part of the circuit shifts one bit
left the input number, so the algorithm could be
applied to the magnitude of the number. The first
ADD/SUB cell, always performs the subtraction of
the operand Dy, from A. After the first subtraction,
the square root process is continued by repeatedly
adding or subtracting the operands D;,D,,...,Dy,
from A, with the decision to add or subtract being
determined by the carry of the previous operation.
The control signals which are required in the
ADD/SUB cells, are provided by the CONTROL
GENERATOR. The general structure of this
subcircuit has been described in section 4.2. The
output unit of the circuit is a parallel-to-serial
converter, in order for the result to be get in serial
manner.

6. CONCLUSIONS

In this article the digit-serial pipelined
architectures of three arithmetic modules has been
presented in full detail, as well as the algorithms on

A

A

L o

E —O

C . O
ADD/SUB, o<

5 carry . D “—re

s W ol =Zw

B m (Muxw: 8] | O =

1 N N ow

£ a3 - ADD/SUB < o

g can'y|. M=

g) . Dan-3

R

E

i dn

\'\n+1 carry

Figure 6: Digit-serial Square Root Extractor

which they are based. These high throughput
modules are very efficient in Digital Signal
Processing applications.

REFERENCES

1. P. Denyer and D.Renshaw, VLSI Signal
Processing, A Bit-Serial Approach. Reading,
MA: Addison-Wesley, 1985.

2. M.Hatamian and G.Cash, "Parallel bit-level
pipelined VLSI designs for high speed signal
processing”, Proc. IEEE, vol. 75, pp. 1192-
1202, Sept. 1987.

3. R.Hartley and P.Corbett, "Digit-Serial Processing
Techniques”, IEEE Trans. on Circuits and
Systems, vol. 37, No. 6, June 1990, pp. 707-
719.

4. K.Parhi, "A Systematic Approach for Design of
Digit-Serial Signal Processing Architectures”,
IEEE Trans. on Circuits and Systems, vol. 38,
No. 4, April 1991, pp. 51-58.

5. D.Ait-Boudaoud, M.KIbrahim and B.R.Hayes,
"Novel cell architecture for bit level systolic
arrays multiplication", Proc. IEE, vol. 138, No.
1, January 1991, pp. 21-26.

6. K.Hwang, Computer Arithmetic: Principles,
Architectures and Design. New York: Wiley,
1979.

7. P.Montuschi and M.Mezzalama, "Survey of
square rooting algorithms", Proc. IEE, vol. 137,
No. 1, January 1990, pp. 31-40.

