
Low-power system-on-chip architecture for wireless
LANs

L. Bisdounis, C. Dre, S. Blionas, D. Metafas, A. Tatsaki, F. Ieromnimon, E. Macii, P. Rouzet, R. Zafalon and
L. Benini

Abstract: The authors present the architecture of a low-power system-on-chip (SoC) that
implements baseband processing as well as the medium access control and data link control
functionalities of a 5 GHz wireless system. The design is based on the HIPERLAN/2 wireless LAN
standard, but it also covers critical processing requirements of the IEEE 802.11a standard. The
options, constraints and motivations for the taken design decisions are presented, and the followed
design steps, starting from the system specifications up to the architecture definition and the system
implementation, are explained. The system’s functionality covers both mobile terminal and access
point devices. A critical design task in such systems is the assignment of the target system’s tasks on
the different types of processing elements available. Processor cores, dedicated hardware as well as
memory elements and advanced bus architectures are used in order to achieve the target
implementation. The architecture is targeted for a low-power SoC platform, due to the fact that
power consumption is a critical parameter in electronic portable system design where excess power
dissipation can lead to expensive and less reliable systems. A system prototype has been developed
on a FPGA-based platform (including microprocessor modules). This FPGA-based prototype is
currently being migrated to a SoC, which requires that the treatment of important issues such as
clock handling, synthesis, testability and debugging is addressed.
1 Introduction

A significant increase in market growth rates and a rapidly
evolving technology for the wireless office and home
networking have created a significant opportunity for chip
design houses and manufacturers to develop new products
[1]. For many years, the use of wireless LANs has been
limited to a very few specialised vertical applications.
However, since the introduction of standards [2] such as the
ETSI BRAN HIPERLAN/2 (high performance radio local
area network type 2) [3, 4] and the IEEE 802.11a [5] for
wireless LANs, the market is moving in a new direction,
gaining even greater momentum. The number of chips sold
worldwide in 2002 in order to satisfy this demand exceeded
14 million units, an almost 75% increase from the previous
year [1]. By 2006 it has been estimated that over 60 million

q IEE, 2004

IEE Proceedings online no. 20030978

doi: 10.1049/ip-cdt:20030978

L. Bisdounis, C. Dre, S. Blionas, D. Metafas, A. Tatsaki and F. Ieromnimon
are with INTRACOM S.A., Technical Division, 19.5 Km Markopoulo
Ave., P.O. Box 68, GR-19002 Peania, Athens, Greece

E. Macii is with the Dipartimento di Automatica e Informatica, Politecnico
di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

P. Rouzet is with STMicroelectronics, Advanced System Technology,
Broadband Wireless LAN Group, Chemin du Champ des Filles 39,
CH-1228 Plan-les-Quates-Geneve, Switzerland

R. Zafalon is with STMicroelectronics, Advanced System Technology,
Low-Power System Design Group, Via C. Olivetti 2, I-20041 Agrate
Brianza, Milano, Italy

L. Benini is with the Dipartimento di Elettronica Informatica e Sistemistica,
Universitá di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy

Paper first received 12th June and in revised form 3rd September 2003
2
wireless LAN semiconductor components will be shipped
[1]. Although, both aforementioned standards operate in the
5 GHz band and are based on orthogonal frequency division
multiplexing (OFDM) technology, their system character-
istics differ significantly, especially in synchronisation and
upper protocol layers’ processing [6].

Wireless communication systems require the optimis-
ation of different factors including real-time performance,
area, power, flexibility and time-to-market [7]. In order to
optimise the combination of the above factors, instruction-
set processors, custom hardware blocks as well as low-
power memory and bus interface synthesis and mapping
techniques are applied, offering a good balance between
flexibility and implementation efficiency [8, 9]. The
evolving scenario has serious consequences for any
system-on-chip (SoC) development to be used in wireless
systems. The protocol processor (that is able to run both the
HIPERLAN/2 and IEEE 802.11a medium access control/
data link control (MAC/DLC) processes) is included in the
proposed SoC in contrast with previous 5 GHz WLAN
ASIC implementations [10, 11] in which an external
protocol processor must be used. Note, that this external
protocol processor cannot be the host processor (e.g. in a
notebook or a base station), but is an additional dedicated
processor able to run such applications. The lower MAC and
DLC processing requirements of both WLAN standards are
such that a dedicated processor in close collaboration with
the baseband modem hardware (full access, on-chip buses
for high speed) is needed for the real-time operation of the
system. Additional advantages of the proposed architecture
over the previous ones include: (i) the adopted low-power
design methodology; (ii) the flexibility created by using an
embedded CPU core for controlling the baseband modem
and implementing the lower MAC processing of the
 IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

HIPERLAN/2 standard; and (iii) a custom processor (MAC
hardware accelerator) for implementing the lower MAC
processing of the IEEE 802.11a standard. In [10], the
baseband processing of both 5 GHz WLAN standards is
implemented by using a combination of a custom digital
signal processor (DSP) and a custom streaming co-
processor, while in [11] ASIC implementations of the
OFDM baseband modem are obtained with some perform-
ance-improving add-ons. A major advantage of the
proposed design is that a power optimisation methodology
is applied at all levels of the system starting from the
embedded software and the hardware-software mapping and
ending with the memory and bus interface synthesis. This
compares favourably with the existing solutions that only
use traditional techniques such as clock-gating implemen-
tation in order to reduce the consumed power.

To define the architecture and verify the functionality of
the dual-mode HIPERLAN/2 – IEEE 802.11a SoC, the
following steps were followed:

. Definition of the requirements and parameters for a
wireless system that hosts the developed SoC.
. Development of the system’s high-level model.
. Application of a power-conscious hardware-software
mapping procedure that also takes into account the results
of the above steps.
. Architecture exploration and architectural template
definition.
. Architecture refinement that incorporates the results of
the low-power methodological tasks.
. Final architecture definition.
. FPGA-based prototyping.

2 The requirements and parameters of the
wireless system

In order to define the SoC architecture, it is very important
to start with the system parameters and requirements
definition that will host the final chip. The developed SoC
will be suitable for use in a 5 GHz WLAN system that
includes an access point and mobile terminals. In a 5 GHz
WLAN system, the access point (AP) and mobile terminal
(MT) exchange Ethernet frames through RF connection [3].
Figure 1 illustrates the design of an AP – MT system.

As previously mentioned, the developed SoC hosts the
modem functionality of the HIPERLAN/2 and IEEE
802.11a standards. Orthogonal frequency division multi-
plexing (OFDM) [12] has been selected as the modulation
scheme for HIPERLAN/2 [4] and IEEE 802.11a [5] due to
its low-cost implementation for frequency selective chan-
nels. The sampling frequency is chosen to be equal to
20 MHz. The obtained subcarrier spacing is 0.3125 MHz.
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004
In order to facilitate implementation of filters and to achieve
sufficient adjacent channel suppression, 52 subcarriers are
used per channel. 48 subcarriers carry actual data and 4 sub-
carriers are pilots which facilitate phase tracking for
coherent demodulation. The duration of the cyclic prefix
is equal to 800 ns, which is sufficient to enable good
performance on channels with a root-mean-square (rms)
delay spread of up to 250 ns (at least). A list of the timing
OFDM parameters [4, 5] is given in Table 1.

To correct for subcarriers in deep fades, channel
estimation and forward-error correction across the sub-
carriers are used with variable coding rates, giving coded
data rates from 6 to 54 Mbps. A key feature of the physical
layer is to provide several physical layer modes with
different coding rates and modulation schemes, which are
selected by link adaptation. BPSK, QPSK and 16-QAM are
the supported subcarrier modulation schemes. Furthermore,
64-QAM can be used in an optional mode. Forward error
control is performed by a convolutional code of rate 1/2 and
constraint length seven. It appends six tail bits at the end of
the PDU (protocol data unit) train in order to set the
convolutional encoder at a zero state. In the case of the
HIPERLAN/2 standard, the first puncturing unit is defined
by a pattern that specifies which bits should be punctured
(deleted), and it is applied to the first 156 bits of the PDU
train. A second puncturing unit follows to provide code rates
of 1/2, 3/4 and 9/16 and it is performed equally to all PDU
train types. The modes should be chosen such that the

Table 1: Timing OFDM parameters

Parameter Value

Sampling rate fS ¼ 20 MHz

Useful symbol part duration

(IFFT/FFT period)

TU ¼ 64 � T ¼ 3:2 ms

Cyclic prefix (CP) duration TCP ¼ 16 � T ¼ 0:8 ms

Symbol interval TS ¼ 80 � T ¼ 4 ms

Subcarrier spacing Df ¼ 1=TU ¼ 0:3125 MHz

Spacing between the two

outmost subcarriers

Df � number of Subcarriers

¼ 16:25 MHz

Broadcast burst

preamble duration

16 ms

Downlink burst

preamble duration

8 ms

Uplink burst short

preamble duration

12 ms

Uplink burst long

preamble duration

16 ms
baseband / DLC
processor

RF control

IF partRF front-end

Rx IF

Tx IF

modem
I/O bus

PCI controller
& bridge

PCI bus

baseband / DLC
processor

RF control

IF part

Rx IF

Tx IF

Modem
I/O bus

ETHERNET
Controller

ETHERNET
Transceiver

AP MT

RF front-end

Fig. 1 AP – MT system design
 3

number of encoder output bits of a PDU fits to an integer
number of OFDM symbols. IEEE 802.11a includes only one
(rate-dependent) puncturing stage. The remaining differ-
ences [6] between the physical layers of HIPERLAN/2 and
IEEE 802.11a concern the support of different coding rates
(see Table 2), the different contents of preamble sequences,
and the different scrambling initialisation sequences. The
mode-dependent parameters for both standards [4, 5] are
listed in Table 2.

Apart from the physical layers, the developed SoC should
be capable of supporting the DLC layer of the HIPERLAN/2
standard [13, 14] as well as the lower MAC layer’s critical
functionality of the IEEE 802.11a standard [15]. The
HIPERLAN/2 basic protocol stack and its functions are
shown in Fig. 2 [13]. The convergence layer (CL) offers
services to the higher protocol layers. These layers are
beyond the scope of this discussion. The DLC layer consists
of the error control function (EC), the medium access
control function (MAC) and the radio link control function
(RLC). It is divided into the data transport functions, located
mainly on the right-hand side of Fig. 2 (user plane), and the
control functions located on the left-hand side (control
plane). The user data transport function on the right-hand
side is fed with user data packets from the higher layers via
the user service access point (U-SAP). This part contains the
EC, which performs an ARQ (automatic repeat request)
protocol. The DLC protocol operates connection-oriented,
which is shown by multiple connection end points in the
U-SAP. One EC instance is created for each DLC
connection. In the case where the higher layer is connec-
tion-oriented, DLC connections can be created and released
dynamically. In the case where the higher layer is
connectionless, at least one DLC connection must be set
up which handles all user data, since HIPERLAN/2 is purely
connection-oriented. The left part of the protocol stack
contains the RLC sublayer, which delivers a transport
service to the DLC connection control (DCC), the radio
resource control (RRC) and the association control function
(ACF). Only the RLC is standardised which defines
implicitly the behaviour of the DCC, ACF and RRC. One
RLC instance needs to be created per MT. The CL on top is
also separated into data transport and control parts. The data
transport part provides the adaptation of the user data format
to the message format of the DLC layer (DLC SDU). In the
case of higher layer networks other than ATM, it contains a
segmentation and reassembly function. The control part can
4

make use of the control functions in the DLC, e.g. when
negotiating CL parameters at association time.

The HIPERLAN/2 DLC functions are divided in data
transport [13] and DLC control functions [14]. The DLC
functions include the following main operations:

. (Des)Association.

. DLC user (de)connection.

. Encryption, decryption (56 bit key DES, TripleDES
optional).
. (De)Framing.
. Contention management mechanism.
. BCCH (broadcast control channel) and FCCH (frame
control channel) analysis and synthesis.
. DLC-CL buffering.
. ARQ (automatic repeat request) mechanism for asyn-
chronous transactions.
. Power saving.
. Dynamic frequency selection (DFS).
. Transmission power control (TPC).

The architecture of the IEEE 802.11 MAC layer is given in
Fig. 3. The basic characteristics of the IEEE 802.11 MAC
layer are given below [15]:

. Support for both ad-hoc and infrastructure wireless LAN.

. On the fly encryption/decryption WEP (wired equivalent
privacy) this is a (48 bit RCA PRNG algorithm).

RRC ACF DCC

control plane user plane

control SAP user SAP(s)

DLC

PHY

CL

HL

PHY

MAC

EC

higher layers

RLC

convergence layer

Fig. 2 HIPERLAN/2 protocol stack and functions
Table 2: Mode-dependent parameters for both standards

Modulation scheme

Coding

rate

Data rate,

Mbps

Coded bits per

subcarrier

Coded bits per

OFDM symbol

Data bits per

OFDM symbol

Both Standards

BPSK 1/2 6 1 48 24

BPSK 3/4 9 1 48 36

QPSK 1/2 12 2 96 48

QPSK 3/4 18 2 96 72

16-QAM 3/4 36 4 192 144

HIPERLAN/2 standard only

16-QAM 9/16 27 4 192 108

IEEE 802.11a standard only

16-QAM 1/2 24 4 192 96

64-QAM 2/3 48 6 288 192

Both standards

64-QAM 3/4 54 6 288 216
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

. MAC-level fragmentation and de-fragmentation.

. Allows support of QoS (quality of service) (802.11e),
Security (802.11i) and DFS/TPC standard extensions
(802.11 h)
. DCF (Distributed coordination function), EDCF
(enhanced DCF), PCF (point coordination function) and
HCF (hybrid coordination function) support: bandwidth
reservation, contention free medium access, traffic category
management (priority and queue based).
. Support of advanced QoS-oriented schemes such as burst
acknowledge mode.

3 High-level model

A high-level model of a HIPERLAN/2-based 5 GHz WLAN
system was developed and tested. The developed model
fulfils two major targets: (i) it assists in the software
development and the testing of the 5 GHz system; and (ii) it
is used as input for the low-power methodology tasks that
run in parallel with the SoC implementation. The high-level
model is used as the specification input for the profiling
within the power-conscious hardware-software mapping
and memory/bus interface synthesis procedures. Also, the
high-level model is used as the specification input for the
data transfer and storage optimisations that are achieved
through preprocessing/pruning and code transformations.
The model was developed using a UML-based software
development process inside the rational rose real-time
framework [16]. The UML model without any user
intervention automatically generates the executable soft-
ware. The main advantage of this UML-based process is that
the same model can be tested on the development
environment as executed on the actual hardware. The
UML-based tool can produce executable C++ code that can
be ported to different combinations of RTOS (real-time
operating system) and processor. The developed model
consists of three major building blocks, (i) the AP model;
(ii) the MT model; and (iii) the testbench core module, the
tester. The AP model includes all the required functional
blocks of an AP, and the required models that support its
operation. The MT model is the proportional model for the
MT (Fig. 4). Finally, the testbench module contains all the

LCC/network layer

data-SAP management SAP

fragmentation
power-
control

MIB

frame counter WEP

synchronisation traffic control

PHY Interface

Fig. 3 IEEE 802.11a MAC architecture
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004
testing software for proving the correctness of the AP and
MT’s implementation.

The described high-level model has been derived after an
exhaustive analysis of the process view of the HIPERLAN/2
standard. An analysis of the processes that are performed
within the HIPERLAN/2 devices and that must be supported
by the developed SoC was performed. A schematic
representation of a simplified process view for a HIPER-
LAN/2 MT is shown in Fig. 5. In this representation the
interactions between the processes are also shown. A
process view for the AP is implemented in a similar way.
An IEEE 802.11 high-level model can be derived similarly,
by analysing the process view of the IEEE 802.11a standard
[15].

The baseband modem’s process is a heavy DSP data path,
thus for the modelling of this process a Matlab represen-
tation was selected. This Matlab modem is valuable not only
for the algorithmic verification of the modem, but also for
the subsequent design phase as it can provide checkpoints
for the intermediate processing stages of its hardware
implementation.

4 Architecture exploration and definition

The target SoC consists of instruction-set processor cores,
the modem datapath, internal memory modules and DMA
engine for fast data transfers plus a number of peripheral
components for I/O and auxiliary tasks. All these com-
ponents are organised as master and slave peripherals of a
central advanced microcontroller bus architecture (AMBA)
AHB bus [17]. Two alternative architectures have been
studied for the target SoC. Both architectures have an
ARM7 TDMI RISC core [18]. The two alternatives concern
the way in which the lower MAC controller as well as the
baseband modem’s controller will be implemented. The first
choice was to realise it in software running on an
instruction-set processor (e.g. ARM) and the second was
to design a dedicated hardware unit. The first solution has
been selected mainly due to the fact that it is easier to
modify. The second alternative will also be investigated for
future use. The decision for a dual-processor architecture
was based on technical criteria related to specific system
requirements and parameters as well as on criteria related to
the reusability and flexibility of the architecture in order to
not only cover both existing standards, but also upcoming
ones.

Scheduler

MT

Sender

MT model

ECL
sender

ECL
receiver

RLC

scheduler

builder decoder

EC_Tx EC_Rx

MT management
entity

MT wrapper

Ethernet
sender

Ethernet
receiver

HIPERLAN/2 MT

Fig. 4 MT model structure
5

Tx CL

Tx driver

Tx frame
builder

RLC (ACF,
RRC, DUCC)

Rx_frame
decoder

Rx_BCH,
FCH

decoder

Rx CL

Rx driver

Rx ethernet
package buffer

mem (PC)

Tx ethernet
package buffer

RLC state

INIT

ME

Tx DLC
queues

Tx RLC
output queue

Tx modem
buffer

Tx scheduler
FCH buffer

Rx BCH,
FCH modem

buffer

Tx modem
transmission

map

Rx modem
reception

map

Rx modem
Tx modem

Rx modem
buffer

Rx DLC
queue

mem (PC)

Tx RLC input
queue

process

memory

input queue
Rx RLC

Rx ARQ
queue

Fig. 5 MT process view
The most common alternative solutions for choosing an
embedded microprocessor are ARM, ARC, IBM PowerPC,
MIPS, 8051, 6502. For the developed design ARM, ARC
and MIPS cores were investigated. Choosing the right core
is a tricky procedure that should take into account target
performance, availability to the system designer, cost (NRE,
chip production). The final choice was the ARM7 TDMI
core, since it meets our requirements in a multi-processor
architecture and with its small size (smaller than 0.6 mm2 on
0.18mm process) and 3600 MIPS/W power efficiency,
offers the smallest footprint and longest battery life. The
ARM7 family’s instruction set reduces system memory
requirements and costs to a minimum, and provides 32-bit
performance for a 16-bit budget. Also, it benefits from a
wide range of application software, operating systems and
development tools support.

The support of the AMBA [17] by the ARM cores, as well
as its technical characteristics were the reasons for its
adoption to the developed SoC architecture. AMBA
specification defines an on-chip communications standard
for designing high-performance embedded microcontrol-
lers. A test methodology is included with the AMBA
specification, which provides an infrastructure for modular
macrocell test and diagnostic access. The AMBA AHB
which is used for high-performance, high clock frequency
system modules acts as the high-performance system
 6
backbone bus and supports the efficient connection of
processors, on-chip memories and off-chip external memory
interfaces with low-power peripheral macrocell functions.
AHB is also specified to ensure ease of use in an efficient
design flow using synthesis and automated test techniques.

After the processing and balancing of the pros and cons of
the architecture alternatives derived in terms of technical
and marketing issues, the final architectural template shown
in Fig. 6 was defined. The presented template is based on a
memory-mapped architecture, based on the AMBA AHB
bus. A typical AMBA AHB system design contains the
following components [17]:

. AHB master: A bus master is able to initiate read and
write operations by providing an address and control
information.
. AHB slave: A bus slave responds to a read or write
operation within a given address-space range. The bus slave
signals back to the active master the success, failure or
waiting of the data transfer.
. AHB arbiter: The bus arbiter ensures that only one
bus master at a time is allowed to initiate data transfers.
Even though the arbitration protocol is fixed, any
arbitration algorithm, such as highest priority or fair access
can be implemented depending on the application
requirements.
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

AMBA AHB bus

DMA
controller

bus bridge

timers
watchdog
Interrupt
controller

test and debug
controller

test
port

PCI
interface

Ethernet
interface

power
management

UART

PCI
controller

Ethernet
controller

SDRAM

ARM7 core
with 8 KB

cache
memory

local bus

ARM7
core SRAM

baseband
modem

MAC/PHY
interface

(HIPERLAN/2)

MAC hardware
accelerator

(IEEE 802.11a)

RF
controller

analog
and RF

front-end

UART

dual-port
SRAM

SDRAM & FLASH
controller

FLASH

Fig. 6 Architectural template of the SoC
. AHB decoder: The AHB decoder is used to decode the
address of each transfer and provide a select signal for the
slave that is involved in the transfer.

There are two ARM7 processors, one serves as the protocol
processor, while the other serves as the lower MAC and
baseband modem’s controller supporting these modules for
timing critical tasks. The protocol processor includes a cache
memory (8 KB) where the protocol stack program and the
received control messages are stored (DLC HIPERLAN/2 or
IEEE 802.11a). The timers, the interrupt controller and the
watchdog circuit are used for the determination of the timing
resolution and the handling of the communication between
the protocol processor and the internal/external memories.
The PCI controller is used for the communication of the
HIPERLAN/2 device with the host processor in the case of
MT operation, while the Ethernet controller is used in the
case of AP operation. Although, the integration of the PCI
and Ethernet controllers inside the chip is feasible and would
further reduce the power consumption, it was decided mainly
for time-to-market and cost purposes to have these
components outside the chip. For quick block-memory
transfers, a DMA controller is attached to the AHB,
configured as a third bus-master of the highest priority.
The DMA controller must be able to assign priorities,
perform static address translation in order to ease system
partitioning and also dynamically assign bus bandwidth
according to current requests being serviced.

Having the local bus showed in Fig. 6, eases chip resource
requirements (which would be large for the case of two
complete AHB systems, one per processor). It is used for the
interconnection of the second ARM core with the baseband/
lower MAC processing modules, allowing enough band-
width and latency for the application. The dual-port SRAM
as well as the SRAM at the local bus will be used not only
for program but also local data processing. The SDRAM
and Flash controller will ensure the communication between
the protocol processor and the external memory com-
ponents. The Flash memory is used to avoid loss of the code
during the power down of the system. At the beginning of
the system’s operation the protocol code is transferred from
the Flash to the SDRAM memory through the DMA.
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004
The power management unit will contain special circuitry
in order to save power dissipated by the system. This special
circuitry will be based on techniques such as: clock gating,
supply shutdown, data encoding for low energy etc. The test
controller will allow external access to the internal AHB
bus. That is mainly for manufacturing testing of internal
modules without using the functional interfaces. Optionally
some interfaces to the internal bus for debugging purposes
can be foreseen. Additional test functionality will be
implemented to enable chip testing without expensive
production testers. The test controller can be extended to
support other test and debug functionalities like memory test
and logic BIST.

Other basic macrocells included to the architectural
template are:

. A MAC hardware accelerator (MHA) which supports the
implementation of the IEEE 802.11a standard’s lower MAC
processing [15], and includes dedicated hardware modules
for encryption/decryption, fragmentation, timing control
(generation of ACK (acknowledgment), RTS (request to
send) and CTS (clear to send) signals), protocol medium
access (backoff process, real carrier sense using CCA (clear
channel assessment) and virtual carrier sense using NAV
(network allocation vector)), CRC (cyclic redundancy code)
etc. This block also includes the appropriate MAC/PHY
interface circuitry for the case of the IEEE 802.11a standard.
. A dedicated block in order to interface the MAC and PHY
processing elements for the case of the HIPERLAN/2
standard.
. OFDM baseband modem supporting both standards.
. RF front-end controller.
. UART I/O serial interfaces.

The MHA is connected to the PHY layer with dedicated
signals for control and a data bus for data transfer. The
MHA, in transmit mode, receives the MSDU or packet to
transfer, from the host to the wireless medium, through
the AMBA bus. Before transfer, the time critical data is
stored on an internal dual-port SRAM where it is
eventually encrypted or fragmented on-the-fly by the
MHA. The data transfer, from the host main memory to
the local memory, does not use the local ARM processor
7

resources, instead the upper-level DMA controller or
directly the host CPU performs the task. The basic
functionality of the MHA in transmit mode is to avoid
collisions on medium access using real and virtual carrier
sense, and optimise the data rate transfer using protocol
features such as fragmentation, RTS/CTS, PHY layer
transmit rate selection. The MHA, in receive mode,
checks and transfers the MPDU or frames received from
the medium to the local memory. The MHA is not
mastering the data transfer to the host memory; this task
is left to the upper-level DMA controller. The basic
functionality of the MHA in receive mode is to validate
incoming frames, select correctly addressed frames,
decrypt and rebuild on entire MAC service data unit
(MSDU) to be forwarded to the host. Figure 7 describes
the internal structure of the MAC hardware accelerator. A
summary of the functionality of the modules shown in
Fig. 7 is given below (see also in [15]):

. The tx_llc module receives the frames and builds the
header register.
. The tx_prepare module performs the fragmentation
and encryption if required; the data are then forwarded to
tx_data.
. The tx_ctrl implements DCF, RTS, Beacon gener-
ation, also supports the EDCF protocol and QoS function-
alities such as HCF.
. The tx_data formats the frames (at the octet level) for
the PHY layer: CRC calculation, timestamp insert, and
sends the octets to the PHY layer.
. The chan_state generates slot time reference for the
tx_bkoff module, detects busy channel from the CCA
signal from the PHY layer, grants access to the PHY with
correct timing such as DIFS (distributed interframe space),
EIFS (extended interframe space) and random slot count.
. The tx_bkoff module counts a random number of
slots, or defers the count when the medium is busy, and
gives the transmit time slot to tx_ctrl when counts
reaches zero.
. The rx_defrag rebuilds the MSDU from fragmented
received frames and decrypts.
. The rx_filter decodes the incoming frame, checks the
destination address and duplicated frames, sends ACK and
CTS requests to rx_ctrl, maintains NAV.
. The rx_ctrl generates control frames (ACK and CTS)
to be sent directly to tx_data.
 8
. The rx_data validates the incoming frame: CRC and
length check, forwards header frame to rx_filter and
data to rx_defrag through the rx_fifo.
. The Bus interface, manages the protocol access to the
system bus, and contains configuration and MIB (manage-
ment information base) registers.
. The MIB and CSR (command status registers) contain the
configuration and management information base registers.

The block diagrams of both the transmit and receive paths of
the baseband modem [4, 5, 19] supporting both the
HIPERLAN/2 and the IEEE 802.11a standards are illus-
trated in Fig. 8. In the transmit path, the binary input data are
scrambled and then encoded by a standard rate 1/2 convolu-
tional encoder. Puncturing the coded output bits may increase
the rate. After interleaving, the binary values are modulated
by using PSK or QAM. The input bits are divided into
groups of 1, 2, 4 or 6 bits and converted into complex
numbers representing BPSK, QPSK, 16QAM or 64QAM
values [19]. To facilitate coherent reception, four pilot
values are added to each 48 constellation points, so a total of
52 values is reached per OFDM symbol, which are modu-
lated onto 52 subcarriers, and then by applying the IFFT the
output is transformed to the time domain. To make the
system robust to multipath propagation, a cyclic prefix is
added, and the PHY burst formation is completed through
the insertion of the proper preambles. The next step is the
digital IF encoding. After that, the digital output signals can
be converted to analog signals, which are then up-converted
to the 5 GHz band, amplified and transmitted through an
antenna.

In the receive path, the first step is the digital IF decoding,
which is followed by the time, the frequency and the data
domains of the receiver. Before the receiver can demodulate
the subcarriers, it has to perform two synchronisation tasks:
symbol synchronisation and frequency offset estimation and
correction [20]. The time domain of the receive path is
continued with the cyclic prefix extractor that performs the
removal of the 16 samples of the cyclic prefix, in order that
64 of the total 80 samples of each symbol can be inserted
into the FFT block. The transition of the received OFDM
signal from the time domain to the frequency domain is
achieved by the application of the 64-point FFT.

The frequency domain of the receive path contains the
channel estimator that is used for the comparison of the
received signal (channel estimation part of the frame) with
tx_prepare

rx_filter

rx_data

chan_state

rx_ctrl

tx_bckoff

tx_data

modem

rx_defrag

tx_ctrl

CCA

header

payload

Rx
FIFO

Tx
FIFO

Rx / Tx
buffers

MHA
core

owner

ACK, CTS

tx ACK, CTS

NAV

Idle, slotrx ACK, CTS

bkf done

tx mpdutx req

rx_end

MIB and
Command
Status

Registers

tx req

config. write

tx_llc

status

config. read

status

bus I/F

Fig. 7 Architecture of the MAC hardware accelerator block
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

constellation
encoder

IFFT
cyclic
prefix

insertion

preambles
unit

data
scrambler

FEC
encoder

interleaverPDU train

constellation
decoder

pilot
equaliser

FEC
decoder

synchroniser
cyclic
prefix

extractor

From
analog/RF
front-end

PDU train

FFT FEQ

channel
estimator

data
descrambler

deinter-
leaver

Viterbi
decoder

depuncture
unit DP2

FEC decoder

digital IF
decoder

To
analog/RF
front-end

digital IF
encoder

depuncture
unit DP1

synchroniser

six tail bits
appender

convolutional
encoder

puncture
unit P1

FEC ENCODER

puncture
unit P2

PHY burst
formation

mapper
and

pilots
insertion

symbol (timing)
synchronisation frequency offset

estimation

frequency offset
correction

Fig. 8 Baseband modem’s block diagram (transmit and receive paths)
the expected sequence in order to estimate the phase and
amplitude attenuation produced by the channel. The FEQ
(frequency equaliser) performs the equalisation of the
received signal by using the channel coefficients (complex
multiplication in the frequency domain), while the pilot
equaliser corrects the phase of the received data carriers by
using the pilot symbols as a reference. In the data domain,
initially the decoding methods for the four modulation
schemes (BPSK, QPSK, 16-QAM and 64-QAM) are applied
by the constellation decoder. Then, the data are deinter-
leaved, and inserted to the FEC (forward error correction)
decoder that consists of two depuncturing units followed by
a convolutional decoder (Viterbi decoder). Finally, the
descrambler performs the descrambling of the decoded data
bits.

5 Refinement of the system architecture to
reduce the power consumption

In order to provide competitive networking devices with
advanced features, the implementation of the SoC is based
on a design methodology, which contains energy optimis-
ation techniques [9] that affect both the embedded software
and the architecture of the system. The techniques that affect
the embedded software concern data transfer and storage
optimisations through preprocessing/pruning and code
transformations [21], as well as embedded software
exploration in terms of the estimation of the energy
consumed by the software through instruction-level power
models [22]. The techniques that lead to a refinement of the
architecture for low-power consumption include power
conscious hardware-software mapping of the system’s
functionality [23, 24], a low-power memory [25] and bus
interface synthesis [26] (Fig. 9).
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004
The developed optimisation techniques explicitly target
applications from the specific application domain (wireless
protocols). For this reason the special features of the
applications in the target domain, mainly related to control
flow, data organisation and type of processing, will be
evaluated and taken into consideration during the develop-
ment of the optimisation techniques. It is expected that these
application specific optimisation techniques will signifi-
cantly reduce the optimisation time while leading to good
quality results as compared to general optimisation
techniques.

The hardware-software mapping that takes as its input the
high-level model of the system, which is in fact a
combination of process views and timing diagrams that
meet the specifications of both standards, is the main task
that leads to the SoC architecture definition. Apart from that,
a systematic approach was developed for the mapping of the
optimised system specification to the available processors
(instruction set and custom hardware) that is mainly driven
by a power-oriented cost function that is also developed. In
order to do this, a profiling and energy estimation tool was
developed. The tool is based on a commercial instruction set
simulator, augmented with functional, timing and power
models for peripherals and memory blocks. The tool takes,
as its input, the source code of the target application and the
power and timing models for various system components, as
well as instruction-level power models. It produces detailed
profiling information, with aggregate performance and
energy estimation for all functions in the source code.
The profiling data are then used to select the majority of
the energy and performance critical kernels in the
application. The results of the above procedure lead to a
refinement of the SoC architecture in terms of power and
performance.
9

 1
power conscious hardware -
software mapping

techniques for application
specific low-power memory
and bus interface synthesis

optimised C model
of the application

tasks to be
implemented in instruction

set processor

tasks to be
implemented in custom

hardware blocks

application specific low -
power memory and

bus interface

power models
of custom

hardware blocks

instruction-level
power models

Fig. 9 Architecture refinement techniques for low-power consumption
Based on existing hardware-oriented memory partition-
ing techniques [27], an automatic optimisation methodology
for on-chip memories to be used in embedded SoCs was also
developed, and it will be applied to the on-chip memories of
the SoC. First, the dynamic execution profile of the
embedded application running on a given processor core
is analysed, and then a multi-banked memory architecture is
synthesised which is optimally fitted to such a profile. The
rationale behind the approach is to partition the memory into
multiple banks that can be independently accessed. The
power per access is reduced as the size of a memory bank is
decreased. On the other hand, as the number of banks
increases, there is an unavoidable hardware overhead
caused by: (i) duplication of addressing and control logic;
and (ii) increased communication resources required to
transfer information. Such an overhead manifests itself in
increases in the power, access time and area that prevents
arbitrarily fine partitioning. Hence, we need to find an
optimal partition with a tight constraint on the maximum
number of memory banks.

In a traditional approach, all addresses in the range are
mapped to a single memory array, generally the smallest
array in the library, that is large enough to contain the
specified range, as shown in Fig. 10a. This solution is not
optimal from the power dissipation viewpoint. Assume, for
the sake of illustration, that the dynamic access profile is
that shown in Fig. 10b. This profile is obtained by standard
instruction-level simulators that are available for all
processor cores (in our case the 32-bit ARM7 processor is
considered). As shown, a small subset of the addresses in the
range is very ‘hot’. A power-optimal partitioned memory
organisation is shown in Fig. 10c. It consists of three
memories and a memory selection block. Two relatively
large cuts contain the top and bottom parts of the range,
while the hot addresses are stored into a small memory. The
average power in accessing the memory hierarchy is
decreased, because a large fraction of access addresses are
concentrated in a small, power-efficient memory.

According to the defined architecture, there are in
principle two internal memory structures on which memory
0

partitioning could be applied with a significant chance of
success: a single-port 16 KB SRAM and a dual-port 120 KB
SRAM. In Table 3, the energy costs and savings before and
after the memory partitioning are shown. The address traces
provided, as input, to the memory-partitioning tool refer to
an ARM7 TDMI processor. Memory addresses are thus
expressed as 32-bit patterns. The processor is assumed to
operate at a frequency of 150 MHz, and the bus frequency is
assumed to be 60 MHz. The address traces used for
determining the best memory architectures showed a total
of 4096 accessed words in the 16 KB SRAM and 30 720
accessed words in the 120 KB SRAM. The chosen
technology for the SRAM is the 0.18mm process by STM.
Each SRAM cell is made of six transistors. Energy savings
achieved for the partitioned memory subsystem have been
determined using the PowerChecker tool [28] for what
concerns the memory components, and the Synopsys
PowerCompiler [29] for what concerns the cost of the
memory controller.

Another way to reduce power consumption in the context
of the SoC architecture is to apply data encoding techniques
[30] to the information transmitted on the SoC buses. These
techniques consist of modifying the way the binary words
are represented. For instance, a word could be represented
by adding one parity bit. Bus encoding has been shown to be
a very effective technique for power reduction, because
even on-chip bus lines have a relatively large parasitic
capacitance, compared to the cell capacitance. Buses are in
fact a significant source of power in today’s systems. For
example, it has been measured that they may account for up
to 30% of the total power in a modern microprocessor.
Therefore, the relative impact of a significant energy
reduction on a bus is non-negligible. Most bus encoding
techniques are based on the idea of reducing the switching
activity of a bus. The switching activity reduction can be
achieved by inserting proper encoders and decoders (codec)
at the sender and receiver’s end of the bus. This scheme
implies point-to-point buses. When comparing the energy
efficiency of various encoding schemes, it is essential to also
consider the impact of the encoder/decoder in the resulting
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

Table 3: Memory energy costs and saving

Memory components, KB Energy cost, mJ

Components after

partition Energy cost, mJ Overhead cost, mJ Energy savings, %

16 0.634 444 block 1 (3.4 KB) 0.439 755 0.014 529 27.36

block 2 (12.6 KB) 0.0067 767

120 0.721 850 block 1 (1 KB) 0.133 081 0.016 516 70.23

block 2 (119 KB) 0.0651 217

ARM7
SRAM
(64 KB)

28 KB

32 KB

4 KB

select

DATA

ADDR

R/W
MS

32

32

monolithic SRAM

DATA
ADDR

ARM7

MS

MS

MS

partitioned SRAM

Accesses

Addr

28 K 4 K 32 K

cba

R/W

R/W

R/W

Fig. 10 Example of memory partitioning

a Traditional architecture
b Dynamic access profile
c Energy-optimal architecture
power budget (in addition to timing and latency overheads).
Encoders and decoders will obviously consume energy,
which should not offset the power reduction achieved by
reducing the total number of transitions.

Bus encoding techniques can be categorised according to
three parameters: (i) redundancy; (ii) knowledge of
statistics; and (iii) type of activity. Some of the encoding
techniques that can be used to reduce the switching activity
on the bus are: bus-invert encoding [31], Gray encoding
[32], T0 encoding [33], Beach encoding [34], transition-
based encoding [35], zone encoding [36], working zone
encoding [37], adaptive encoding [30], frequent-value
encoding [38].

Concerning the analysis of the potential sources of
applicable low-power bus-encoding techniques within the
SoC architectural template, we can identify two categories
of buses: (i) the local bus; and (ii) the AMBA AHB bus. The
main difference between them lies in the type of bus
transactions supported. A local bus transmits plain words
and, once the arbitration of the bus has been resolved, it can
be considered as a point-to-point bus, where exactly one
sender and one receiver exist. The AMBA bus falls in the
more general category of multi-point buses. Here, the bus
protocol distinguishes between control and data packets,
allowing complex types of transaction types such as burst
transfers. Furthermore, the possibility of arbitrating the bus
through explicit commands introduces the concept of bus
master(s) and slave(s), with the possibility of multiple
masters. When considering energy optimisation, local,
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004
point-to-point buses typically offer more opportunities for
power reduction than multi-point buses, thanks to their
essential functional specification. As an intuitive justifica-
tion to this fact, consider that most low-energy bus encoding
schemes exploit the presence of a correlation between bus
patterns (e.g. in address buses). Clearly, correlation does
exist between ‘information’ patterns (data or addresses) but
not between control patterns. In this sense, a multi-point bus
that supports complex protocols will interleave data/ad-
dresses with control patterns, thereby reducing the amount
of correlation on the travelling onto the bus.

In order to apply bus-encoding techniques on the local
bus, an exploration tool has been developed, in which
several of the aforementioned encoding methods have been
implemented in software. Data and address traces that have
been obtained by profiling of the embedded application are
used as input to the exploration tool. The output of the
exploration tool is the savings in terms of number of power
consuming transitions. Synthesis and optimisation of the
bus codec at the gate-level has been performed using the
Synopsy’s DesignCompiler [39], while placement and
routing of buses and codec has been made using Cadence’s
SiliconEnsemble [40]. Energy consumption of the buses and
of the codec has been estimated using Synopsy’s Power-
Compiler [29]. The STM (0.18mm) standard cell library
was used for the implementation of the bus interface logic
(i.e. the encoder/decoder).

Given a set of input bus traces, regarding addresses and
data, the first step we performed was to identify the most
11

convenient encoding scheme using our exploration tool.
Address traces did show a significant amount of sequenti-
ality between consecutive patterns; as a consequence,
encoding schemes such as Gray [32] and T0 [33] did
provide the best results in terms of energy savings and codec
complexity. In particular, also taking into account the
available bus latency, the final decision was to go for the
Gray scheme. If we look at the number of address bus
transitions, we observe a reduction with respect to the
unencoded bus in the order of 66%. This is clearly a purely
theoretical result. In fact, when comparing the power
efficiency of various encoding schemes, it is essential to
also consider the impact of the codec in the resulting power
budget. Concerning data traces, the situation is a bit more
complicated. In fact, the bus profiles we have analysed do
not seem to show any particular type of correlation, neither
spatial, nor temporal. The expected reduction in transition
count is thus smaller. As a consequence, it seems
appropriate to focus on encoding schemes for which the
cost of the codec is minimal, thus allowing some overall
power reductions in spite of the small power reduction that
may be achieved on the bus lines. Using the exploration tool
with appropriate bus latency constraints leads to two
possible options for data bus encoding. The bus-invert
code [31] and the adaptive code [30]. More specifically, as
the overhead introduced by the adaptive codec is signifi-
cantly higher than that of the bus-invert scheme [31], we
have opted for the latter. The achieved reduction in the
number of bus transitions is smaller than in the case of the
address bus, and it is around 57%.

After an exploration regarding the address bus, significant
power savings (41.5%) are obtained when the bus length
goes beyond 1000mm as the cost of the encoder/decoder is
only 64mW. Regarding the data bus, the activity reduction
provided by the bus-invert code [31] is smaller than for the
case of Gray code [32] on the address bus. In addition to
that, the implementation of the encoder/decoder is more
expensive (around 143mW). Power savings up to 39% are
obtained when the bus length goes beyond 1000mm.

6 FPGA-based prototype implementation

In order to continue with the prototyping of the SoC design,
three advanced FPGA-based platforms were explored: NEC
12
FPGA platform (SocLite, formely Socrates), ARM Inte-
grator, and SISDA FPGA platform (CARMEN). Taking
into consideration the technical, market and cost issues, we
concluded to an FPGA platform using the ARM Integrator
solution [41], for prototyping the SoC design. This solution
is flexible enough for the defined architecture (multi-
processor support and large user-defined gate count, AHB
system bus) and there is no development effort for the FPGA
board. The prototyping procedure will help to verify the
SoC architecture (ARM cores, buses, bandwidth etc.), and
to perform early software development and debugging on a
hardware platform, early test of the baseband modem in a
real environment (e.g. real signals with noise for the
receiver) and early validation of the whole system (RF and
analog parts included).

The block diagram of the FPGA-based architecture is
illustrated in Fig. 11. In this, two core modules including the
protocol and the lower MAC/modem control processors are
used, along with two logic modules for the baseband modem
and its interfaces. Concerning the partitioning of the
required logic to the logic modules, the top logic module
implements the modem’s transmit path, the time domain of
the modem’s receive path and the MAC/PHY interface,
while the bottom logic module implements the data and the
frequency domains of the modem’s receive path. Each logic
module hosts a XILINX Virtex E 2000 FPGA [42]
(0.18mm) with 500 K usable gates, 640 KB of additional
RAM (BlockRAM), and built-in clock management circui-
try (eight DLLs). Figure 12, shows a more detailed view of
the logic modules in the ARM Integrator platform. The total
utilisation of the bottom logic module (FPGA) is 85%. The
total utilisation of the top logic module is 89%. The
utilisation per resource type for the bottom and the top logic
modules is presented in Table 4. In order to have a full
system design of the AP or MT wireless LAN 5 GHz
components, the baseband modem’s functionality is fol-
lowed by an IF (20 to 880 MHz) and an RF (880 MHz to
5 GHz) stage. The analog-to-digital and digital-to-analog
conversion, for communicating with the IF analog front
ends of the receiver and the transmitter respectively, is
implemented on a separate board which seats on a dedicated
connector for external communications on the ‘top’ of the
stack of logic modules. Also the communication with the
PCI or Ethernet interface is done through that port.
core module 1

protocol processor

core module 2

Lower MAC & modem
control processor

AMBA AHB

SRAM

SRAM
controller

AHB bus
interface

SRAM
controller

AHB bus
interface

SRAM

system control FPGA
top logic
module

Tx path & Rx time
domain, MAC/PHY

interface

bottom logic
module

Rx data &
frequency domain

RF
analog

IF

AMBA arbiter
Ethernet controller

PCI controller
external bus interface
ARM related blocks

ARM
Integrator
platform

Fig. 11 Block diagram of the FPGA-based architecture
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

Table 4: Utilisation of the top and the bottom logic modules (FPGAs)

Used Utilisation, %

Resource Bottom FPGA Top FPGA Bottom FPGA Top FPGA

I/Os 93 312 18.16 60.93

Function generators 14 923 16 527 38.86 43.04

CLB slices 12 164 11 252 63.35 58.60

DFFs or Latches 6368 8544 15.60 20.94

top logic module motherboardanalog IFNCS
RF

24 MHz

BUFFER

3~50 MHz

PCI CLK cPCI CLK
UART
CLK

SYSCLK[3:0]

SYSCLK[3:0]

I,Q
 m

od
em

Tx

IF
Rx

mem

Tx
mem

RF reference
clock domain

system bus
clock domain

Clocks
Domain

B
Clocks
Domain

A

CLK_A30
30 MHz

CLKB
60/80

DAC

ADC

ICS670

DAC_CLK
ADC_CLK

DAC_CLK_ENABLE
ADC_CLK_ENABLE

ICS670
80 MHz_CLK

40 MHz

DAC_DATA

ADC_DATA

24 MHz

bottom logic module

 SYSCLK0 <
< SYSCLK

SYSCLK0 <
< SYSCLK

EXPB

Freq. domain

30 MHzClocks
Domain A

 Data domain

Receiver

Rx Time
Domain

R
x_

in

R
x_

ou
t

R
x_

cm
d

XCV2000E

ICS525
(PLL)

ICS525
(PLL)

ICS525
(PLL)

ICS525
(PLL)

24 MHz

A
M

B
A

S
LA

V
E

EXPB
XCV2000E

ICS525
(PLL)

ICS525
(PLL)

ICS525
(PLL)

Fig. 12 Detailed view of the logic modules

Fig. 13 Photograph of the ARM Integrator platform along with the IF, RF boards and the antenna
Measurements showed an excellent performance of the
modem i.e. a 23 dB signal is needed for the 64-QAM when
for QPSK 10 dB is sufficient. Finally, Fig. 13 is a
photograph that illustrates the ARM Integrator platform
along with the IF, RF boards and the antenna, which are
needed for the implementation of the MT or AP wireless
LAN 5 GHz devices. By using the illustrated system twice
(one operating as an AP and a second operating as a MT), a
5 GHz wireless system is demonstrated. In Fig. 13, the
location of each component is indicated.

The functional evaluation/verification of the whole system
on the FPGA-based platform gives valuable results and
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004
proves that we can have a real-time SoC architecture capable
of implementing the baseband, MAC and DLC processing of
both standards. This verification can lead to new refinement
of the SoC architecture to meet real-time processing
requirements. This step can change e.g. the clock frequency
of specific hardware blocks or can lead to a decision that more
functions of the MAC/DLC processing of both standards
need hardware support. Other important features of the final
SoC (which will be implemented in the STM 0.18mm
process) that were not implemented in this first phase (ARM
Integrator) are, the clocking strategy, design for testability,
and enhanced debugging circuitry and strategy.
13

7 Conclusions

The design of a low-power SoC for wireless LANs has been
described. The system will realise the HIPERLAN/2 and
IEEE 802.11a standards and will cover the operation of both
MT and AP devices. Emphasis was given on the options,
constraints and motivations for the taken design decisions,
and on the followed design steps, starting from the system
specifications until the architecture definition and the
system implementation. Also, the application of an
energy-aware methodology was presented. The prototype
implementation of the system on the ARM Integrator
platform with an architecture that is very close to the one
that is followed in the ASIC phase proves that the proposed
flexible SoC architecture can meet the functional and timing
requirements of both of the WLAN standards. This
architecture in terms of functionality and timing with the
refinements for low-power consumption will lead to a low-
power WLAN processor.

The FPGA-based implementation of the WLAN pro-
cessor cannot so far prove the savings in power dissipation.
The purpose of the FPGA-based implementation on the
ARM Integrator platform was to prove that with a FPGA-
based architecture that is close to the final SoC architecture
the WLAN processor is fully functional for both standards
and can meet the real-time constraints. This aim was
successfully achieved. The architecture refinements for low-
power described in Section 5 will lead to a low-power
flexible WLAN processor in the ASIC design phase. As, at
this point in time, the chip placement is not yet available, in
order to assess the quality of our results we have derived the
achievable power savings, i.e. quantified results for the
power gain by analysing some significant design corners.
Energy savings achieved for the partitioned memory
subsystem have been determined using the PowerChecker
tool for what concerns the memory components and the
PowerCompiler tool for what concerns the cost of the
memory controller. Concerning the main memory com-
ponents of the SoC, power gains of 27.36 and 70.23% can be
achieved in the single-port and dual-port on-chip SRAMs,
respectively. In order to determine the power gain for the
bus encoding techniques, routed buses were extracted at the
layout-level using the SiliconEnsemble tool. After an
exploration using several bus-encoding techniques, power
gains of 41.5 and 39% can be achieved at the address and
data bus respectively, when the local bus (shown in Fig. 6)
length goes beyond 1000 mm. In addition, after the
collection of profiling data obtained from simulations,
some power-consuming system functions have been
identified and would benefit from implementation in
dedicated hardware units, leading to additional reductions
in the consumed power.

8 Acknowledgments

This work was partially supported by the project IST-2000-
30093 EASY (Energy-aware System-on-Chip design of the
HIPERLAN/2 standard), funded by the EU. The authors
also thank the reviewers for their valuable suggestions and
comments to improve the paper’s structure and research
results.

9 References

1 In Stat/MDR, ‘WLAN chipset market – The incredible journey is just
beginning’, Report No. IN020271WT, March 2002

2 van Nee, R., Awater, G., Morikura, M., Takanashi, H., Webster, M., and
Halford, K.W.: ‘New high-rate wireless LAN standards’, IEEE
Commun. Mag., 1999, 37, (12), pp. 82–88
14
3 European Telecommunications Institute (ETSI), Broadband Radio
Access Network (BRAN), ‘HIPERLAN Type 2: System Overview’,
TR 101 683, February 2000

4 European Telecommunications Institute (ETSI), Broadband Radio
Access Network (BRAN), ‘HIPERLAN Type 2: Physical (PHY)
Layer’, TS 101 475, April 2000

5 The Institute of Electrical and Electronics Engineers, ‘Supplement to
IEEE standard for information technology – Telecommunications and
information exchange between systems – Local and metropolitan area
networks – Specific requirements – Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer in the 5 GHz band’, IEEE
Std. 802.11a, 1999

6 Doufexi, A., Armour, S., Butler, M., Nix, A., Bull, D., and
McGeehan, T.: ‘A comparison of the HIPE-RLAN/2 and IEEE
802.11a wireless LAN standards’, IEEE Commun. Mag., 2002, 40,
(5), pp. 172–180

7 Rashinkar, P., Paterson, P., and Singh, L.: ‘System-on-Chip verifica-
tion’ (Kluwer Academic Publishers, Boston, MA, 2001)

8 Berger, A.S.: ‘Embedded system design: An introduction to processes,
tools and techniques’ (CMP Books, Lawrence, KS, 2002)

9 Rabaey, J.M., and Pedram, M.: ‘Low-power design methodologies’
(Kluwer Academic Publishers, Boston, MA, 1996)

10 Kneip, J., Weiss, M., Drescher, W., Aue, V., Strobel, J., Oberthur, T.,
Bole, M., and Fettweis, G.: ‘Single chip programmable baseband ASSP
for 5 GHz wireless LAN applications’, IEICE Trans. Electron., 2002,
85, (2), pp. 359–367

11 Eberle, W., Derudder, V., Vanwijnsberghe, G., Vergara, M., Deneire,
L., Van der Perre, L., Engels, M.G.E., Bolsens, I., and De Man, H.: ‘80-
Mb/s QPSK and 72-Mb/s 64-QAM flexible and scalable digital OFDM
transceiver ASICs for wireless local area networks in the 5-GHz band’,
IEEE J. Solid-State Circuits, 2001, 36, (11), pp. 1829–1838

12 van Nee, R., and Prasad, R.: ‘OFDM for mobile multimedia
communications’ (Artech House, Boston, MA, 1999)

13 European Telecommunications Institute (ETSI), Broadband Radio
Access Network (BRAN), ‘HIPERLAN Type 2: Data Link Control
(DLC) layer – Part 1: Basic data transport functions’, TS 101 761-1,
Nov. 2000

14 European Telecommunications Institute (ETSI), Broadband Radio
Access Network (BRAN), ‘HIPERLAN Type 2: Data Link Control
(DLC) layer – Part 2: Radio Link Control (RLC) sublayer’, TS 101
761-2, April 2000

15 The Institute of Electrical and Electronics Engineers, ‘Information
technology – Telecommunications and information exchange between
systems – Local and metropolitan area networks – Specific
requirements – Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications’, ANSI/IEEE Std.
802.11, 1999

16 Rational Software Corp., ‘Rational Rose RealTime: Modeling language
guide’, May 2002

17 ARM Limited, ‘AMBA Specification’, Rev. 2.0, May 1999
18 ARM Limited, ‘ARM7TDMI technical reference manual’, Rev. 4.0,

2001
19 Khun-Jush, J., Schramm, P., Wachsmann, U., and Wegner, F.:

‘Structure and performance of the HIPERLAN/2 physical layer’.
Proc. IEEE Vehicular Technology Conf., Houston, TX, 16–20 May
1999, vol. 5, pp. 2667–2671

20 Schmidl, T.M., and Cox, D.C.: ‘Robust frequency and timing
synchronization for OFDM’, IEEE Trans. Commun., 1997, 45, (12),
pp. 1613–1621

21 Catthoor, F., Wuytack, S., De Greef, E., Balasa, F., Nachtergaele,
L., and Vandecappelle, A.: ‘Custom memory management method-
ology’ (Kluwer Academic Publishers, Dordrecht, The Netherlands,
1998)

22 Tiwari, V., Malik, S., Wolfe, A., and Lee, M.T-C.: ‘Instruction-level
power analysis and optimizations of software’, Journal VLSI Signal
Process., 1996, 13, (2-3), pp. 223–238

23 Benini, L., De Micheli, G., Lioy, A., Macii, E., Odasso, G., and
Poncino, M.: ‘Computational kernels and their application to sequential
power optimization’. Proc. ACM/IEEE Design automation Conf.,
San Francisco, CA, 15–19 June 1998, pp. 764–769

24 Henkel, J.: ‘A low-power hardware/software partitioning approach for
core-based embedded systems’. Proc. ACM/IEEE Design automation
Conf., New Orleans, LA, 21–25 June 1999, pp. 122–127

25 Benini, L., Macii, A., Macii, E., and Poncino, M.: ‘Increasing energy
efficiency of embedded systems by application-specific memory
hierarchy generation’, IEEE Des. Test Comput., 2000, 17, (2),
pp. 74–85

26 Benini, L., Macii, A., Macii, E., Poncino, M., and Scarsi, R.:
‘Architectures and synthesis algorithms for power-efficient bus
interfaces’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
2000, 19, (9), pp. 969–980

27 Pedram, M.: ‘Power aware design methodologies’ (Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2002)

28 BullDAST s.r.l., ‘PowerChecker User Manual’, Version 3.1, 2003
29 Synopsys Inc., ‘Power Compiler data sheet’, http://www.synopsys.com/

products/power/power_ds.html, September 2001
30 Ramrasad, S., Shanbhag, N., and Hajj, I.: ‘Signal coding for low-power:

Fundamental limits and practical realizations’. Proc. IEEE Int. Symp.
on Circuits and Systems, Monterey, CA, 31 May–3 June 1998, vol. 2,
pp. 1–4

31 Stan, M.R., and Burleson, W.P.: ‘Bus-invert coding for low-power I/O’,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1995, 3, (1),
pp. 49–58
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004

http://www.synopsys.com/products/power/power_ds. html
http://www.synopsys.com/products/power/power_ds. html

32 Mehta, H., Owens, R.M., and Irwin, M.J.: ‘Some issues in Gray code
addressing’. Proc. ACM/IEEE Great Lakes Symp. on VLSI, Arnes, IA,
22–23 March 1996, pp. 178–180

33 Benini, L., De Micheli, G., Macii, E., Sciuto, D., and Silvano, C.:
‘Asymptotic zero-transition activity encoding for address buses in
low-power microprocessor-based systems’. Proc. ACM/IEEE Great
Lakes Symp. on VLSI, Urbana, IL, 13–15 March 1997, pp. 77–82

34 Benini, L., De Micheli, G., Macii, E., Poncino, M., and Quer, S.: ‘Power
optimization of core-based systems by address bus encoding’, IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., 1998, 6, (4), pp. 554–562

35 Aghaghiri, V., Fallah, F., and Pedram, M.: ‘Irredundant address bus
encoding for low-power’. Proc. ACM/IEEE Int. Symp. Low-Power
Electronics and Design, Huntington Beach, CA, 6–7 August 2001,
pp. 182–187

36 Aghaghiri, V., Fallah, F., and Pedram, M.: ‘EZ encoding: A class of
irredundant low-power codes for data, address and multiplexed address
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 1, January 2004
buses’. Proc. Design Automation and Test in Europe Conf., Paris,
France, 4–8 March 2002, pp. 1102–1105

37 Mussol, E., Lang, T., and Cortadella, J.: ‘Working-zone encoding
for reducing the energy in micro-processor address buses’,
IEEE Trans. Very Large Scale Integ. (VLSI) Syst., 1998, 6, (4),
pp. 568–572

38 Yang, J., and Gupta, R.: ‘FV encoding for low-power data I/O’. Proc.
ACM/IEEE Int. Symp. on Low-power electronics and design,
Huntington Beach, CA, 6–7 August 2001, pp. 84–87

39 Synopsys Inc., ‘Design Compiler data sheet’, http://www.synopsys.
com/products/logic/design_compiler.html, September 2003

40 Cadence Design Systems Inc., ‘Silicon Ensemble PKS datasheet’, http://
cadence.com/datasheets/silicon_ens_pks.html, April 2002

41 ARM Limited, ‘Integrator/AP user guide’, 1999-2001
42 Xilinx Inc., ‘Virtex-E 1.8V Field Programmable Gate Arrays,

Preliminary Product Specification’, Version 2.0, April 2001
15

http://www.synopsys.com/products/logic/design_compiler.html
http://www.synopsys.com/products/logic/design_compiler.html
http://cadence.com/datasheets/silicon_ens_pks.html
http://cadence.com/datasheets/silicon_ens_pks.html

	Low-power system-on-chip architecture for wireless LANs
	Introduction
	The requirements and parameters of the wireless system
	High-level model
	Architecture exploration and definition
	Refinement of the system architecture to reduce the power consumption
	FPGA-based prototype implementation
	Conclusions
	Acknowledgments
	Bibliography
	References

