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Abstract: The implementation and validation of a 5-GHz wireless LAN modem based on the
HIPERLAN/2 standard is presented. In modern wireless communication systems, there is a demand
for higher flexibility and more computational efficiency. Therefore the emphasis of this work is on
the hardware–software structure of the developed modem and its processes, in order to offer a good
balance of these requirements. In order to efficiently design and validate the behaviour of the
modem, a behavioural model was developed in UML (Unified Modelling Language) as a part of the
overall HIPERLAN/2 system’s model. The processes of the modem were implemented in an
instruction-set processor and custom hardware, combining the advantages of both software and
hardware implementations. The communication between the software and hardware parts of the
modem is achieved through a specialised programmable interface unit. The UML-based model of
the actual HIPERLAN/2 system is used in order to validate the modem’s behaviour, using scenarios
from in-field usage (such as transfer of data using FTP or HTTP). Furthermore, the validation of the
algorithms implemented within the modem was based on this system model, and performed through
the use of a custom-validation framework. This framework produces patterns for the validation of
the modem’s algorithms, at three different development phases (algorithmic, HDL, FPGA-based
prototyping), derived from the simulation of the system model in a consistent and automatic way.
Implementation figures and co-simulation results for the developed wireless LAN modem are also
given.
1 Introduction

A significant evolution in wireless office and home networks
creates new opportunities for developing new products in
this area providing inherent flexibility and mobility
advantages. The introduction of specialised standards,
such as the ETSI BRAN HIPERLAN=2 [1] and the IEEE
802.11a [2], has opened the road to new products in this
area. It has been estimated that more than 61 million
wireless products will be shipped by 2006 [3]. Both
aforementioned standards operate in the 5 GHz band, and
both utilise orthogonal frequency division multiplexing
(OFDM) for multicarrier transmission [4].

The HIPERLAN=2 standard features many physical layer
data rates, with a maximum of up to 54 Mbps, using a
combination of modulation schemes and coding factors [5].
Furthermore, it supports advanced quality of service (QoS)
features for streaming audio and video services [6]. The
QoS features are provided by the medium access control
(MAC) layer of the protocol, through a central resource
control scheme, which controls the link capability among
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access point and mobile terminals according to interference
situations and distance.

The scope of this paper is to present the design and
implementation of a modem for the HIPERLAN=2
standard. The complicated nature of a HIPERLAN=2-
based system (real-time performance, area, power, flexi-
bility and QoS requirements) suggests the usage of
dedicated processors, for the upper protocol’s layers, in
close collaboration with the modem’s functions. In order to
design the modem itself along with its complicated and
flexible interface with the upper layers, a novel design flow
was followed. The flow begins with the modelling of the
behaviour of the modem and its interface as parts of the
executable specification model of the overall wireless
system, using unified modelling language (UML) [7] for
this purpose. In this way, validation of the interface and
basic modem’s functionality is performed at a high level of
abstraction, along with the rest of the system, using system-
level usage scenarios. The use of high-level modelling in the
early phase of the design helps to eliminate design flaws and
allows the thorough examination and evaluation of the
interface of the modem.

The development flow that was followed for the
development of the HIPERLAN=2 system and its modem
is presented in Fig. 1. After obtaining the specifications, the
system is modelled using UML. The model is executed to
validate the conformance of the modelled system to its
specifications, and the hardware and software design phases
follow. After the design phases, the system artefacts are
validated once more, prior to the final system-integration
and validation phase. The validation of the hardware parts of
the system is integrated with the validation at the system
level through the specially developed validation framework,
which is presented in Section 5.
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The implementation of the modem is divided into
software running in a dedicated instruction-set processor
and custom hardware modules. This implementation
strategy combines the advantages of hardware implemen-
tation (high speed, low power dissipation) with the
efficiency that derives from the software implementation
of the modem’s critical parts, such as the central resource
manager (scheduler) of the MAC layer. The seamless
communication between the modem’s processes
implemented in the software and the hardware can be
guaranteed only by a specialised interface, which was
designed and validated thoroughly through the high-level
model of the system.

The high-level modelling approach is also used for the
validation of the modem’s algorithms. This approach is
based on a validation framework, which takes as input a
high-level description of HIPERLAN=2 frames and
automatically produces test patterns for the validation of
the design of the modem in three different phases. The
three phases used for the validation are the algorithmic
theoretical development phase, the design phase (VHDL)
and the implementation phase (FPGA). The validation
approach, used during the development of the modem,
integrates the validation of the modem’s design (interface,
algorithms) with the protocol’s validation.

Concerning previously proposed mode implementations
at the 5-GHz band; in [8] the baseband processing of both
5-GHz standards (HIPERLAN=2; IEEE 802.11a) is
implemented by using a combination of a custom digital
signal processor and a custom streaming coprocessor,
whereas in [9] ASIC implementations of the OFDM
modem are proposed. Both cases do not present the
interface with the upper layers of the protocol stack.
A major advantage of this paper is that it introduces a
detailed interface between the modem and the protocol,
which has been developed and validated through exhaus-
tive simulation at different levels of abstraction. The
emphasis of this paper is mainly on the hardware and
software codesign aspects of the modem, the communi-
cation between its hardware and software parts as well as
on the validation methodology. The detailed description of
the modem’s and the overall WLAN system’s hardware is
beyond the scope of this paper, and more details can be
found in [10] and [11].

Fig. 1 Hardware–software design and validation flow
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2 High-level modelling of the modem

The major problem in the design of a complicated system,
such as the wireless LAN modem, is the verification of the
design and the early detection of design faults [12]. For this
reason, a UML-based flow for the system design of the
modem was followed in order to produce an executable
system specification (virtual prototype) for early verification
of its control functions. This virtual prototype is based on a
UML model, which uses the UML-RT profile [13], based on
the real time object-oriented modelling (ROOM) metho-
dology [14]. This UML profile is capable of representing
the architecture of the system at a high level of abstraction
[15].

The design flow starts with obtaining the system’s
specification. During this phase, the specifications of the
system are formally obtained using the modeling techniques
offered by UML, such as the use-case and sequence
diagrams. An example of a use-case diagram that models
some of the services of the physical layer of the protocol
stack is presented in Fig. 2. The internal structure of the
modem is then shaped, and is modelled as abstract objects
and classes. In this way, a UML model is created, which
contains the main functional blocks of the control processes
of the modem, not committed to a specific implementation
strategy. The behaviour of each process is then captured
inside the objects of the model, in a pure behavioural way,
using state charts [16] provided by UML to create abstract
finite state machines.

In addition to the modem’s functionality, the UML model
also contains the protocol stack of the HIPERLAN=2 [1]
system, in order to complete the modelling of the overall
system. The produced virtual prototype of the system, in
terms of executable system specifications, can be used for
the early verification of the modem and its programmable
interface. This phase is as important as the overall
implementation of the modem itself [12]. The verification
of the modem is performed against the usage scenarios of
the system that were identified when the specification was
obtained. As a result, the actual HIPERLAN=2 protocol
stack implementation, modelled in UML, is used to verify
the modem’s behaviour using scenarios from in-field usage,
such as the association and connection setup procedures and
the transfer of data using FTP or HTTP.

The structure of the UML model that was used for the co-
simulation and verification of the modem is presented in
Fig. 3. The developed modem consists of three main
building blocks: the access point (AP) model, the mobile
terminal (MT) model, the ethernet models and the tester
model, which is the core of the testbench and a model of the
air interface. The tester model is capable of introducing

Fig. 2 Use-case diagram for the physical layer of the access
point
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random errors inside the physical layer bursts, simulating, in
this way, the real-world behaviour. The AP and MT models
consist of the UML-based behavioural model of the modem,
and the HIPERLAN=2 protocol stack, suitably modified for
the AP or MT specific needs, respectively. The tester allows
the communication between the two network nodes (AP and
MT) in the form of a physical-layer burst. Apart from these
blocks, the testbench also contains models for sources and
sinks of ethernet packets. Each network node, AP or MT, is
connected to one source and one sink of ethernet packets, to
simulate the traffic generated by the core network.

The detailed structure of the AP model is presented in
Fig. 4, as a UML structure diagram. This diagram presents
the objects that comprise the high-level AP model. Each
object is associated with a state machine, describing the
behaviour of the corresponding object’s functionality. The
structure presented in this Figure is the same for the MT
model, apart from the scheduler object, which does not exist
inside the MT model.

Within the structure of the AP model there is a group of
three objects that model the interface of the modem with the
rest of the system, as well as the behaviour of the modem’s
control parts. These objects are the ‘modem data IF’, the
‘modem control IF’, and the ‘modem bursts creation’. The
first object models the behaviour of the data manipulation
parts of the modem’s interface (memories and registers), the
second object models the behaviour of the control parts of
the interface (commands accepted by the modem, interrupts),
whereas the third object models the behaviour of the modem
(creation of broadcast, downlink and uplink data bursts).

The other important group of objects models the interface
of the rest system with the modem. The HIPERLAN=2

Fig. 3 High-level model of the modem

Fig. 4 Access point (AP) model
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standard does not specify this interface, and so the resulting
scheme presented here is the outcome of the co-simulation
of the system with the high-level UML model. The objects
responsible for the interface of the protocol with the modem
are the ‘AP scheduler’, the ‘AP frame builder’ and the ‘AP
frame decoder’. The scheduler is the part of the interface
that shares the resources of the physical layer among the
various DLC (data link control) connections and their QoS
requirements, producing the format of each HIPERLAN=2
frame. The format of the frame is then translated into
modem commands, stored inside the ‘modem control IF’
object. The frame builder is responsible for the creation of
the downlink bursts of the frame for the AP. Its input is the
format of the downlink burst produced by the scheduler, and
its operation is to collect transmission packets from the DLC
queues and format them accordingly, transferring the
resulting parts of the frame to the ‘modem data IF’ object.
The operation of the decoder object is the equivalent for
the uplink parts of the frame. An important feature of the
proposed implementation of the interface parts of the
modem with the rest system (DLC layer of the protocol) is
that the overall scheme operates without intermediate
packet transfers. The operation of the interface objects is
based on the exchange of pointers, minimising this way the
utilisation of the system bus. The only packet transfers of
the system are between the DLC queues and the modem,
and the DMA (direct memory access) engine of the system
performs them.

The objects outside the grey area in Fig. 4 concern the
DLC layer (data transport functions [17] and radio link
control sublayer [18]) as well as the ethernet specific
convergence layer (ECL) [19] of the HIPERLAN=2
standard, which are beyond the scope of this work.

3 Hardware–software mapping and
communication

An important task during the design of the modem is the
mapping of its processes to the used instruction-set
processors, i.e. software implemented processes, and to
custom hardware, i.e. hardware implemented processes, as
well as the determination of the interface of the processes
implemented in the software with those implemented in the
hardware. The mapping scheme that is used in this
development is heuristic (based on our previous experience
from the development of similar systems), as in the majority
of today’s systems [20]. The architecture of the platform
(ARM integrator [21]), in which the modem’s prototype is
implemented, was selected in order to realise the produced
mapping scheme of the overall system. The prototype
platform mainly consists of two ARM processor cores [22]
for the realisation of the processes that were mapped for
implementation in the software, and FPGA devices for
the implementation of the hardware parts of the modem.
The processor cores are responsible for the execution of the
upper layers of the HIPERLAN=2 protocol stack and
the software parts of the modem. The physical layer of the
protocol (the modem’s data path and control units) was
implemented onto the FPGA devices of the prototype
platform. Details of the architecture of the overall system
implementing the HIPERLAN=2 wireless LAN standard
can be found in [11].

Table 1 summarises the processes of the modem that are
implemented in the software along with those implemented
in the custom hardware. For the implementation of the
interface between the modem and the HIPERLAN=2 DLC
layer, a fully programmable hardware unit has been
designed, capable of executing a set of suitable instructions.
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The selection of the instruction set of the modem is based on
the results of alternative instruction sets using the high-level
virtual prototype of the system. Using this prototype, the
partitioning scheme was also validated and verified in order
to prove that it meets the requirements of the system’s
functionality. Details of the architecture and the implemen-
tation of the programmable modem interface unit are given
in the next Section, where the modem’s implementation is
presented.

The reason for implementing some objects of the modem
in the software is the increased flexibility that the design
maintains with this solution. Concerning the scheduler of
the system, a software implementation allows the modifi-
cation of its algorithms to enhance its operation by
introducing newer and more efficient ways to share the
wireless bandwidth and to meet QoS requests. The
scheduler executes an algorithm that categorises
the connections to QoS classes, and shares the capacity of
the frame to the classes, using fixed priorities. Furthermore,
in extreme situations, it can dynamically modify the
priorities to allow maximum utilisation of the frame and
to avoid starvation of the connections of the lower class
[23]. The close collaboration of the scheduler with the frame
builder and decoder processes was also the reason for the
implementation of both objects into the software. Further-
more, in order to maintain the flexibility that is offered by
the software implementation, a separate processor was
selected for the mapping of the software parts of the modem
interface, in order to keep its independence from the other
layers of the protocol stack that are running on a different
processor [11].

The remaining processes of the modem and its interface,
presented in Table 1, were implemented in the custom
hardware, since this solution offers the implementation
speed required for such a complex functionality. Apart from
the modem’s interface block, the remaining blocks of the
right column in Table 1 belong to receive and transmit paths
of the baseband modem. The structure of both baseband
modem paths is presented in the next Section, where the

Table 1: Mapping of the modem’s processes and
interface to the instruction-set processor and custom
hardware

Processes implemented

in software

Processes implemented

in hardware

Scheduling data scrambling and descrambling

Frame building forward error correction (FEC)

encoding and decoding

Frame decoding data interleaving and deinterleaving

constellation encoding and decoding

direct and inverse Fourier transform

(FFT and IFFT)

Symbol synchronisation and

frequency offset estimation and

correction

burst formation

pilot insertion and equalisation

cyclic prefix insertion and extraction

frequency equalisation

channel estimation

modem interface processes

(programmable unit)
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architecture and the modem’s implementation are
presented.

4 Modem implementation

The implementation of the modem has two different
aspects: the first concerns the software parts, whereas the
second deals with the custom hardware implementing some
parts of the modem, see Table 1. The implementation of the
modem’s software parts was based on the high-level model
of the system (Section 2), which was further refined to
include the implementation details of the three objects that
were implemented in the software (scheduler, frame
decoder, frame builder). The functionality of these modem’s
objects was designed using state-charts, e.g. the one
presented in Fig. 5, for the frame builder block of the AP.
The development of the software parts of the modem was
performed using the Rose-RT tool [24], and automatic
executable source code generation from the UML model of
the corresponding objects.

Table 2 presents average execution times for the
important functionalities of the modem’s software objects
during a frame with typical traffic. The scenario uses the
QPSK modulation scheme [5] with a code rate of 3=4
ðmaximum throughput ¼ 18MbpsÞ and 75% utilisation of
the frame duration ðtotal frame duration ¼ 2msÞ: The
operating frequency for the ARM processor running the
code was 50 MHz. Furthermore, using the 64-QAM
modulation scheme with a code rate of 3=4 [5], the
maximum available user throughput of the system reaches
42 Mbps.

Both receive and transmit paths of the modem (Fig. 6)
were implemented in the hardware, using a pure VHDL
flow. The transmit path of the modem accepts binary input
data, which are then scrambled, encoded by the convolution
encoder. Interleaving then takes place, followed by
modulation, using QPSK or QAM schemes. The forward
error control block then processes the resulting data, which
are fed to the IFFT block that transforms them to the time

Fig. 5 State-chart for the builder object of the AP

Table 2: Implementation figures for the modem’s
software parts

AP functionality

Execution

time ðmsÞ

Source code

size (lines)

Binary code

size (KB)

Scheduler 240 5600 59.6

Frame builder 320 11800 77.8

Frame decoder 370 9800 63.7
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Fig. 6 Modem’s transmit and receive paths
domain. A cyclic prefix is then added, to compensate for
multi-path fading, and finally the burst of the physical layer
is created.

In the receive path of the modem, after the synchronisa-
tion (symbol synchronisation and frequency offset esti-
mation and correction), the cyclic prefix extractor removes
the extra samples, and then the FFT block transforms the
signal back to the frequency domain. The channel estimator
unit then estimates the phase and amplitude attenuation, and
the frequency equaliser performs the equalisation of the
received signal. In the data domain of the receive path, the
decoder decodes the data, which are then deinterleaved and
processed by the forward error control (FEC) decoder.
Finally, the descrambling of the decoded data bits is
performed.

Another important part of the modem is the implemen-
tation of its communication with the upper layers of the
HIPERLAN=2 protocol stack [1]. The modem’s interface is,
in fact, the interface between the ARM microprocessor and
the baseband modem. It features a fully programmable
engine by the ARM, which generates all the control
information for the baseband receiver and transmitter.
Furthermore, it also handles the received data, which are
forwarded to the processor and the transmitted data and sent
to the modem by the ARM processor.

The interface of the modem’s hardware with the software
parts of the modem includes a number of memory buffers, a
number of interrupt signals and a command set. The
command set of the modem, along with a short description
of each command is summarised in Table 3. Apart from the
commands, the interface unit includes a number of storage
buffers (e.g. command memory, transmit and receive data
memories) and a series of interrupts (e.g. synchronisation,
end of receive, end of transmit), as acknowledgements to the
protocol’s requests.

The internal architecture of the modem interface unit
illustrating its basic blocks is given in Fig. 7. The
‘command translator’ block generates the control signals
for both transmit and receive data paths of the modem. The
‘puncturing’ block generates the puncturing control signal
indicating when puncturing insertion should happen.
The ‘scrambler initialisation’ block generates the control
signals to initialise the data scrambler and descrambler of
the modem. Scrambler initialisation happens in the begin-
ning of each burst of data or after the change of the link
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 3, May 2004
mode within a burst. The ‘memory address generator’ block
generates the address and the necessary control signals to
access both receive and transmit memories. The ‘interrupt
generator’ block generates the required interrupts for the

Table 3: List of the modem’s interface commands

Command Description

Tx transmits a downlink burst (arguments ¼ packet

type, number of packets, physical mode,

time slot)

Tx_S transmits an uplink burst with short preamble

(arguments ¼ packet type; number of packets,

physical mode, time slot)

Tx_L transmits an uplink burst with long preamble

(arguments ¼ packet type; number of packets,

physical mode, time slot)

Rx receives a downlink burst from the

mobile terminal (arguments ¼ packet type;

number of packets, physical mode, time slot)

Rx_S receives an uplink burst with a

short preamble (arguments ¼ packet type,

number of packets, physical mode, time slot)

Rx_L receives an uplink burst with a long preamble

(arguments ¼ packet type; number of packets,

physical mode, time slot)

IQ_EN turns on=off the RF I=F of the board

ðarguments ¼ time slotÞ

RESET resets the modem’s pointers to its memories

to their initial position, sets the number

of frames for synchronisation search, sets the

slot number after synchronisation

END flushes out the transmit of the receive pipeline

ðarguments ¼ time slotÞ

NOP the modem does not perform any operation

ðarguments ¼ time slotÞ

BCH_SRCH searches for the synchronisation preamble

CFG configures the modem with the contents of the

configure memory ðarguments ¼ time slotÞ
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Fig. 7 Internal architecture of the modem’s interface unit
ARM processor. The ‘bus interface’ block is a slave bus
interface for the AMBA system bus [25, 11], and
communicates with the modem’s memories. The ‘slot
counter’ controls the execution time of each control
command. The modem interface unit parses the control
commands and the configuration information, and generates
the necessary control information for the baseband receiver
and transmitter.

The hardware parts of the modem and its interface were
implemented onto two logic modules [26] of the ARM
integrator platform [21], each one featuring a XILINX
Virtex E 2000 FPGA [27] with 500 K usable gates and
640 KB additional RAM. The average utilisation of the
FPGAs is 87%: An abstract diagram of the platform is given
in Fig. 8.

More details on the realisation of the modem on the logic
modules of the ARM integrator platform can be found in
[10] and [11], since the emphasis of this work is on the
investigation of the combined hardware–software design
aspects of the modem as well as on its validation
methodology.

5 Validation framework and the modem’s
validation

The validation of the design is performed in three different
phases. The first one concerns the validation at the
algorithmic level, where both receive and transmit

Fig. 8 Block diagram of the used ARM integrator platform
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algorithms of the modem are developed and verified at the
numerical level. The second phase concerns the VHDL
development environment and its simulator, whereas the
third validation phase concerns the reconfigurable hardware
and its accompanying platform.

Before the validation of the modem’s algorithms, for the
purposes of system validation, an executable specification
model of the system has been developed, using UML [7].
This model helps the validation of the specifications of the
system early in the design process. An important artifact of
the UML modelling is a set of system-usage scenarios,
captured formally using the UML’s modelling techniques.
These usage scenarios, accompanied with sequence dia-
grams formally presenting each one, are a helpful resource
for the validation of the system’s design at various levels of
abstraction. This model is also used to validate the design of
the system’s software, using as input the formally obtained
system specifications in the form of sequence diagrams.

One approach to the validation of the hardware design of
the system, and more specifically the modem, is to use the
formal validation techniques offered by UML modelling for
this purpose, and the developed UML model of the system.
The idea is to use the same sequence diagrams and the same
UML system’s model for the validation of the hardware
blocks of the modem, suitably modified to meet the nature
and specific requirements of hardware validation. The way
to achieve this is to create a methodology and a validation
framework that takes as its input usage scenarios from the
system level and produces validation patterns for all the
three modem’s validation phases. In order for the validation
to be accurate, the transformation of the high-level usage
scenarios to low-level test patterns for the validation of the
modem has to be automatic and formal.

In order to automate and facilitate the method for
generating the test input for all three phases of the modem’s
validation from the high-level system scenarios, a custom
validation framework was developed. This framework
provides an automatic connection of the whole system’s
validation with the validation of the modem at the various
phases of its development process. The operation of the
developed framework is presented graphically in Fig. 9. Its
major advantage is that from a given high-level frame
description it can produce test patterns for the three
validation phases that are consistent, and perform the
same validation scenario at the corresponding validation
environment.

The input of the validation framework is descriptions of
the map of a HIPERLAN=2 frame at a high-level format.
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 3, May 2004



These descriptions are obtained during the execution of the
UML model of the system, under the stimulus of the usage
scenarios, in the form of sequence diagrams. During the
execution of these testing scenarios by the UML system
model the outputs of the scheduler class of the system are
logged. These logs contain the maps for a selected number
of MAC frames, as these maps have been generated by the
central scheduler of the system and its policies for allocating
transmission resources. The validation framework is able to
process these types of high-level frame information to
produce test patterns for all three phases of the modem’s
validation.

The first phase of the validation of the modem concerns
the validation of the receive and transmit algorithms in a
MATLAB environment [28]. An ad-hoc testbench has been
created inside this environment to validate the developed
algorithms. This testbench can be driven by a simulation
scenario file and data files containing data to be processed
by the algorithms. All these types of files are generated
automatically by the validation framework, to efficiently
validate the algorithms of the modem with the same
operating scenarios as the ones used for the validation of
the system’s UML model.

The second validation phase supports the VHDL-based
design of the modem. Inside the context of this phase, a
VHDL-based testbench has been developed to help the
verification task. The role of the validation framework
during this phase is to produce input files and to support the
operation of this VHDL-based testbench. More specifically,
the framework produces force files that fill the memory
blocks of the modem (configuration, transmit and control
command memories) with valid contents, according to the
high-level frame description. Furthermore, inputs and
outputs of each algorithmic block are produced during the
validation of the algorithms at the numerical level
(MATLAB environment), which can also be used for the
verification of the VHDL-based design, in direct compari-
son with the algorithmic results.

The last phase of the modem’s validation concerns the
FPGA-based prototype platform. The platform contains the

Fig. 9 Input-output artifacts of the validation framework
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reconfigurable blocks that realise the modem’s circuitry and
the system’s processors. The validation phase at this
platform is performed through the hardware–software
interface of the modem, and is driven by the processor
that is responsible for the modem control (Fig. 8). The role
of the validation framework during this phase is to
automatically produce the processor source code that will
drive the validation, by using the high-level frame
description. The code must fill all the modem’s memories
with valid data specific to the validation scenario and
control the execution of this scenario.

In order to present the detailed operation of the validation
framework and the functions that it performs in the context
of the verification of the system’s algorithms, results from
its application to the verification process of the wireless
LAN modem are given below. The modem verification case
presented here is based on an in-filled usage scenario,
suitably modified to meet the specific validation environ-
ments used for the development of the algorithms. The
scenario used for the testing of the modem design is a part of
the protocol’s radio link control (RLC) association scenario,
between the AP and the MT. A number of protocol frames
are captured during this high-level usage scenario and are
translated into suitable test vectors for the verification of the
modem. One of these frames is presented in Fig. 10 showing
the bursts comprising a protocol frame, along with the
starting time slot, duration and number of data units for each
burst.

The presented frame includes the broadcast burst (access
point identity, capabilities and map of the current frame),
the downlink burst (which contains a train of 5 short (SCH)
and 12 long (LCH) packets), and the uplink burst (1 long
and 10 short packets). Furthermore, the frame includes a
random access burst, during which unassociated mobile
terminals can perform their initial contact with the access
point.

The structure of a protocol frame, captured from high-
level system verification, can be translated using the
developed framework into a number of test vectors for
every development phase of the modem. Apart from the
creation of the test vectors, the validation framework
produces a representation of the testing scenario in a
symbolic format, using the modem instructions. The
automatically produced modem program, in the form of
symbolic commands, for the aforementioned protocol frame
is presented in Fig. 11.

Apart from the modem command program in symbolic
format, the validation framework produces test vectors for
the MATLAB testbench, the VHDL-based testbench and
the FPGA platform. For the presented testing scenario, the
full contents of all the memory buffers of the modem for
both AP and MT nodes are produced, along with validation
control loops. The operation of the testbench is to fill the
buffers of the modem’s interface with suitable input values
and to drive the inputs of the modem with valid data
streams. In the case of the FPGA-based prototype platform,
the validation framework produces a testbench for the
modem’s dedicated processor, in the form of an ARM
Fig. 10 HIPERLAN=2 frame for modem validation
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Fig. 11 Modem program in symbolic format (produced by the validation framework)
assembly code. The role of this code is to program the
modem and to inspect the results that it produces.

6 Validation results

In order to exploit the advantage offered by a pure VHDL
design and simulation environment, the validation frame-
work has been developed and utilised. This framework
converts the high-level frame description into a set of force
files in a Modelsim format. Since the Modelsim tool [29]
cannot handle the format of the frame and therefore cannot
fill the memories of the modem interface unit (configur-
ation, transmit and control command memories) with their
contents, in order for the baseband modem to be
programmed, the force files must be produced.

In the timing diagrams of Fig. 12, the signal ‘AP_
Tx_IQ_data_out’ and ‘MT_Tx_IQ_data_out’ are the trans-
mitter’s output for the access point and the mobile terminal,
respectively. The signals ‘AP_Rx_data_out’ and
‘MT_Rx_data_out’ are the receiver’s output (the data that
are inserted in the receive memory of the modem interface
unit) for the access point and the mobile terminal,
respectively. Also, the basic control signals for both the
access point and mobile terminal are shown (‘data_valid’,
enable and control commands for the receiver and start of
transmission for the transmitter). Note, that analog
interpretation of the data signals is used for better under-
studying of the results.

Figure 12 illustrates the simulated signals for a complete
frame (broadcast, downlink and uplink bursts). These
signals were generated after the execution of the simulation
scenario that was produced automatically by the validation
framework for the input frame given in Fig. 10. The
different bursts of the simulated frame are clearly presented
in Fig. 12. For each burst of the frame, the packets that it
contains are also displayed in the same Figure. For the
transmission of the user packets (LCHs), this example uses
the QPSK 3=4 physical mode. Similar test cases were also
performed in order to cover all the physical layer modes
supported by the HIPERLAN=2 standard [30].
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7 Conclusions

This paper presents the implementation and the validation
of the software and hardware parts of the baseband modem
for a wireless LAN application. For the design of the
modem, a flexible implementation scheme was followed,
where some parts of the modem were implemented in
hardware, for efficiency reasons, and some parts in software,
for flexibility reasons. The specialised communication
between the hardware and the software parts of the
modem was designed and validated by using the high-
level model of the system.

The validation of the modem and its interface was based
on a high-level system model, developed using UML. This
UML-based model of the actual HIPERLAN=2 system was
used, in order to validate the modem’s behaviour using
scenarios from in-field usage (such as the association and
connection setup procedures and the transfer of data using
FTP or HTTP). The same approach was also used for the
validation of the algorithms implemented within the
modem. For this purpose, a validation framework was
developed. The framework uses as input a high-level frame
format, as it has been produced by the simulation of the
UML system model, and produces specific test patterns for
the validation of the modem’s algorithms, at three different
phases of the development (algorithmic, HDL, FPGA-based
prototyping).

The main benefit of the validation framework presented
in this paper is that it integrates the validation of the
modem’s development with the validation of the rest of the
system, which is performed at a high level of abstraction
using UML modelling. This way, initially the behaviour of
the modem can be validated inside the UML model of the
system, using real-usage case scenarios for this purpose, and
then, the implementation of the modem and its algorithms
can be performed using the validation framework that
integrates the validation at this level with the validation at
the system level. The use of this validation framework helps
in the easy and efficient identification and correction of the
modem’s design errors. Furthermore, the proposed vali-
dation framework is based on the modelling of the system
IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 3, May 2004



Fig. 12 Timing simulation of the modem using the VHDL testbench
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with UML, which is becoming a trend in today’s embedded
systems [15].

The proposed validation framework, along with UML
modelling at a high level, helped the design of the
HIPERLAN=2 modem by speeding up the system-inte-
gration and validation phases. The validation support that
provided the framework and high-level modelling was
really important for the efficient and fast development of the
modem, and therefore of the overall system. Other proposed
methodologies for telecommunication systems (such as the
one presented in [8]) do not offer support to the validation of
the modem’s design at different levels of design abstraction
(system model, mathematical analysis, HDL design, FPGA
prototype), even if they propose UML for the modelling of
the system, as in the design methodology presented in [31].
The use of UML for the modelling and validation of the
modem as has been proposed in this paper significantly
boosts its development.

The prototype of the presented modem was implemented
successfully on an FPGA-based platform (ARM integrator).
The characteristics of the implemented software and
hardware parts of the modem are presented throughout
the paper. Furthermore, results from the co-simulation of
the modem through the testing scenarios produced by the
validation framework are also presented, along with sample
outputs of the framework.
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