
Open Technical Lecture:
Embedded systems & applications and system-on-chip design

1L. Bisdounis

Embedded systems & applications
and system-on-chip design

Open Technical Lecture

Labros Bisdounis, Ph.D.

Project manager
Research & Development Division

INTRACOM TELECOM S.A.

Adjunct professor
Department of Computer and
Communication Engineering

University of Thessaly

September 2007

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

2L. Bisdounis

• The heterogeneity of today’s embedded systems faces developers
and engineers with new problems when it comes to specifying,
simulating, designing and optimising such complex systems.

• Implementations are typically comprised of software components,
programmable or dedicated hardware components, communication
and memory subsystems.

• The design of embedded systems is driven by cost vs. performance
trade-offs. The optimization involves the simultaneous consideration
of several incomparable and often competing objectives, such as
cost, speed, power consumption, reliability etc.

• As a consequence, much effort and automated design tools are
necessary in order to handle the complexity of today’s embedded
systems, and find the trade-off which is the most suitable for the
market requirements.

Motivation

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

3L. Bisdounis

• An embedded system is any device which includes a
programmable component but itself is not intended to
be a general-purpose computer.

• An embedded system:

is a collection of programmable components
surrounded by application-specific hardware
components and other peripherals.

and interacts continuously with its environment
through sensors (with the general meaning).

What is an embedded system ?

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

4L. Bisdounis

Present and future of computing !

Main characteristics of an embedded system

• Dedicated and application-specific
(not general purpose).

• Contains at least one
programmable component.

• Interacts continuously with the
environment.

• It is real-time: must meet external
timing constraints (deadlines).

• Must meet other constraints:
power consumption, physical
constraints, cost, reliability, safety.

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

5L. Bisdounis

• Digital components: processors, memories, controllers,
buses, application specific circuits, peripherals (interface
circuits).

• Embedded software.

• Analog components: sensors, actuators.

• Converters: A/D and D/A.

Components of an embedded system

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

6L. Bisdounis

Analog

An example: Digital camera

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

7L. Bisdounis

• Embedded software: software running on embedded processors:

Application programs.

Real-time operating system.

Peripheral’s drivers.

• Digital (hardware) components:

Programmable processors.

Dedicated hardware implementing critical and demanding tasks
or tasks that are not suitable for software implementation.

Reconfigurable hardware (e.g. FPGAs).

Embedded software and digital components

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

8L. Bisdounis

• Processing:

Used to transform data.

Implemented using programmable processors and/or custom hardware.

• Storage:

Used to maintain data.

Implemented using memory modules.

• Communication:

Used to transfer data between processors, custom hardware blocks,
peripherals and memories within a system.

Implemented using buses in most cases.

• Peripherals (interfaces) and controllers.

Computing elements in embedded systems

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

9L. Bisdounis

• There is need for energy, code size and run time efficiency.

• In general, processor in embedded systems is the device that runs
a number of algorithms and contains control and datapath units.

• General purpose (GP) processors:
Perform a variety of computational tasks.
Flexible and low cost.
Slow and power hungry.

• Application-specific processors (ASIPs):
Tuned for an application domain, but programmable.
Fast and power efficient (compared to GP).

• Application-specific circuits (ASICs):
Customized hardware components for specific task.
Fast, power efficient, minimal area.
Inflexible and high cost.

Processors in embedded systems

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

10L. Bisdounis

• Programmable devices used in
a variety of applications.

• Contain program memory,
general datapath with large
register file and general ALU.

• Low time-to-market and
NRE (non-recurring cost).

• High flexibility.

General-purpose processors (GP)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

11L. Bisdounis

GP example: AMD Athlon 64

• 64-bit CISC processor (technology: 130 nm, area: 193 sq.mm, transistors: 106 million)
• 16 64-bit and 16 128-bit registers
• 64KB 2-way associative L1 data and instruction cache memories
• 1MB 16-way associative L2 cache memory
• Integrated memory controller

P LL

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

12L. Bisdounis

GP example: Dual-core AMD Athlon 64

• Dual-core processor (technology: 90 nm, area: 199 sq.mm, transistors: 233 million)
• Discrete L1 and L2 cache structures for each core
• Memory interface module

PLLs

External DRAM
interface Transport

channels

Core 1 memory
interface buffers

Core 2 memory
interface buffers

Core 1

Core 2

Core 1 - L2 Cache

Core 2 - L2 Cache

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

13L. Bisdounis

GP example: ARM1020E processor

• 32-bit RISC processor with six-stage
pipeline (technology: 130 nm
technology, area: 10.3 sq.mm area).

• 64-bit instruction and data buses (two
instructions are fetched per cycle).

• 16-bit compressed (Thumb) instruction
set for better code density.

• Floating point co-processor.

• External memory controller and memory
management units.

• 32KB 8-way associative caches
instruction and data cache memories.

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

14L. Bisdounis

• Programmable devices optimized
for a particular application or
family of applications having
common characteristics.

• Contain program memory,
optimized datapath and specific
functional units.

• Use specific instruction set.

• High performance, small size and
low power consumption.

• Usually they exhibit small
flexibility.

• DSP, network processors,
configurable processors etc.

Application-specific processors (ASIP)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

15L. Bisdounis

ASIP design flow

Application analysis and
design space exploration

Instruction-set generation and
architectural template definition

Code generation Hardware synthesis

Object code Processor’s
hardware description

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

16L. Bisdounis

ASIP example: Tensilica Xtensa LX2 processor
• Configurable, extensible and synthesizable

processor for rapid implementation of
complex SoC designs.

• Base architecture: 32-bit ALU, 68 registers,
80 instructions, compressed 16- or 24-bit
instruction encoding.

• Selection and configuration of predefined
processor functions (configurability).

• Optional predefined execution units:
32-bit multiplier, 16-bit MAC, DSP engine,
floating point unit.

• Explorer to analyze the application and find
options that will enhance performance.

• Specific language (Verilog-like) to describe
new execution units, and processor
generator to add them to the processor
(extensibility).

• Designer-selectable 5- or 7-stage pipeline:
option of adding two cycles for access
memories with long access times.

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

17L. Bisdounis

• Digital circuits designed to
implement exactly one algorithm
(application or part of application).

• Custom-designed circuits that are
necessary if ultimate speed or
energy efficiency is the goal
(known as coprocessors or
hardware accelerators).

• Contain only the components
needed for the execution of a
specific algorithm (no program
memory is needed).

• Fast, low power consumption,
small size, high cost for low
volume.

Application-
oriented
datapath

Application-specific circuits

Audio
processing

ASIC

D
at

a
/ c

on
tr

ol

lo
gi

c

M
em

or
y

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

18L. Bisdounis

• Prefabricated digital devices that can
be purchased and programmed by the
designer/user.

• Programmable arrays of generic logic
modules, programmed by the
designer/user and not by the
semiconductor foundry.

• PLDs, FPGAs.

• Alternative to ASICs with low NRE
cost, and fast availability.

• Penalty on area, performance and
power consumption.

Programmable devices

Xilinx
FPGA

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

19L. Bisdounis

• Memory is used in embedded systems for storage purposes
and offers access capabilities (read and/or write).

• Main characteristics:

Storage permanence: ability of memory to hold stored bits
after they are written.

Write ability: manner and speed a memory can be written.

• There are many different types of memories:

Random access: SRAM, DRAM

Read only: ROM, PROM

Erasable-programmable: EPROM, EEPROM, Flash

Combination of SRAM and EEPROM properties: NVRAM

Memory in embedded systems

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

20L. Bisdounis

Comparison of memory types

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

21L. Bisdounis

• Communication in an embedded system accounts for the transfer of
data between processors, custom hardware blocks, peripherals and
memories.

• Implemented using buses.

• Example: Common forms of communication are when a processor
read or writes a memory or when a processor reads or writes a
peripheral’s register.

• Connectivity schemes:
Serial communication (USB, RS232 etc.): use single wire, high
throughput for long distance communication, low cost).
Parallel communication (PCI, AMBA etc.): use multiple wires,
high throughput for short distance communication, high cost).
Wireless communication (Infrared, RF).

• Each connectivity scheme has an associated protocol describing the
rules for transferring data over it.

Communication in embedded systems

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

22L. Bisdounis

• The main issues regarding the communication of a processor with
the peripherals through a system bus are:

The addressing procedure: how the system address map is
used in order the processor to communicate with the memory
and the peripherals.

The interrupt-driven communication: the processor accepts
interrupt signals in order to read and process data from a
peripheral.

The direct memory access (DMA) for transferring data between
memories and peripherals, without going through the processor.

Arbitration: how to handle simultaneous servicing requests of
peripherals.

Main issues in embedded systems communication

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

23L. Bisdounis

• Peripherals and controllers perform specific computation tasks.

• Custom single-purpose processing blocks:

Designed by us for a unique task.

Predesigned (by others) for a common task.

• Examples:

Timers, counters: to measure timed events or indicate that a maximum
count reached.

UART - universal asynchronous receiver transmitter: takes parallel data
and transmits serially, receives serial data and converts to parallel.

LCD interface: interface the system to a liquid crystal display.

External memory controller, PCI controller, USB interface, Ethernet or
other network type interface.

Peripherals and controllers in embedded systems

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

24L. Bisdounis

INFORMATION
PROCESSING

A/D
CONVERTER

D/A
CONVERTER

SENSOR ACTUATOR
ENVIRONMENT

Converters in embedded systems

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

25L. Bisdounis

Converters in embedded systems (cont’d)

Main issues:
• Sampling: how often is the signal converted.
• Quantization: how many bits used to represent a sample.

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

26L. Bisdounis

Microphone Megaphone

Laser diode,
transistor Antenna

AccelerometerDC motor

• Sensors

Capture physical stimulus (heat,
light, sound, pressure, magnetism,
mechanical motion).

Typically, they generate a
proportional electrical current.

• Actuators

Convert a command to a physical
stimulus (heat, light, sound,
pressure, magnetism, mechanical
motion).

Analog components in embedded systems

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

27L. Bisdounis

Sensors and actuators in embedded systems

• Sensors can be designed for virtually every physical stimulus. First, they
capture the physical data and then they process them.

• Many physical effects are used for constructing sensors: generation of
voltages in an electric field (law of induction), light-electric effect etc.

• Examples: heart monitoring sensors, car sensors (rain sensors for wiper
control, proximity sensors), pressure sensors (touch pads and screens),
audio sensors, motion sensors, thermal sensors (SARS detection through
high fever) etc.

• Actuators produce output physical stimulus for various environments: motor
control actuators (industrial applications), optical actuators (IR), thermal
actuators, MEMS devices (Micro-Electro-Mechanical Systems) etc.

• MEMS technology regards the integration of mechanical elements and
electronics on a common silicon substrate. Applications: biotechnology
(DNA identification), communications (RF-MEMS), accelerometers
(air-bags).

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

28L. Bisdounis

• Automotive electronics (airbag control,
dashboard info, ABS, consumption
control etc.).

• Aircraft electronics (guidance, flight
control, air quality control, pressure
control etc.).

• Telecommunication systems (mobile
phones and network cards, mobile base
stations etc.).

• Medical systems (diagnostic and
monitoring systems, radiation systems).

• Defence systems (radars and safety
communication systems, navigation
systems like GPS etc.).

• Consumer multimedia electronics
(cameras, game machines etc.).

• Industrial process control systems.

• Robotics (electro-mechanical systems).

Embedded applications

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

29L. Bisdounis

• Mobile phone:
Multiprocessor system (8-32 bit
processor for user interface, DSP,
32-bit processor for IR and Bluetooth
ports)
8-100 MB memory, custom chips,
integrated camera, megaphone,
speaker etc.

• Smart beer glass:
Combines a fluid-level sensor with
a simple 8-bit processor and an RF
system with internal antenna. The
system checks the fluid level & alerts
the servers when close to empty.
Integrates several technologies such as:
radio transmission, sensor engineering,
computer monitoring.

Embedded applications in every-day life

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

30L. Bisdounis

• Lego mindstorms robotics kit: combines
an 8-bit controller with 64 kB memory.

• Electronic circuits to interface the
processor with the various sensors and
motors.

• Good way to start learning embedded
systems…

Embedded applications for kids
Control unit

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

31L. Bisdounis

• 53 8-bit, 11 32-bit and 7 16-bit
microprocessors (71 in total!).

• Multiple networks.

• Sensors and actuators distributed all
over the vehicle.

• Windows CE operating system.

• Engine management: consumption,
ignition, emission control etc.

• Instrumentation: data acquisition,
display and processing.

• Safety and stability: airbags, ABS (anti-
lock braking system), ESP (electronic
stability control), efficient and automatic
gearboxes etc.

• Entertainment and comfort: Radio-CD,
A/C, television, GPS etc.

BMW 745i

Embedded applications for lotto winners

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

32L. Bisdounis

• Reactivity requirement.

• Timing constraints.

• Power dissipation constraints.

• Size and weight constraints.

• Cost constraints.

• Safety and security constraints.

• Reliability constraints.

• Time-to-market constraints.

Constraints in embedded applications

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

33L. Bisdounis

• Reactivity requirement: embedded systems are in
continual interaction with its physical environment
through sensors and actuators, and execute at a rate
determined by the environment.

• Timing constraints:

Most of the embedded systems have to perform in real-
time which means that if data is not ready by a certain
deadline (i.e. reaction of the system within a certain time
interval dictated by the environment), the system fails.

A real-time constraint (deadline) is called hard, if not
meeting that constraint could result in a failed operation
of the system. All other time-constraints are called soft
(if not meeting, the operation of the system will be
degraded, but the system will not fail).

Embedded & real-time terms are almost synonymous.

Most embedded systems are real-time and most real-
time systems are embedded.

EmbeddedEmbedded

RealReal--timetime

Embedded Embedded
RealReal--timetime

Reactivity and timing constraints

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

34L. Bisdounis

• Power consumption constraints:

High power dissipation needs strong power supply and
expensive cooling system.

High power consumption leads to short battery life time
(very critical issue in mobile/portable applications).

• Size and weight constraints:

Critical for mobile, portable devices (e.g. PDAs, mobile
phones, cameras).

Very critical for specific medical applications (e.g. pills
with integrated camera and data acquisition system).

11 x 26 mm

Power and size/weight constraints

http://www.pixmania.com/gr/gr/164779/art/sharkoon/aiaieoo-nao-uv-reactive-f.html

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

35L. Bisdounis

• Cost constraints: embedded systems are very often
mass products in highly competitive markets and have
to be shipped at a low cost (e.g. mobile phones market).

• We are mainly interesting in manufacturing cost and
design cost.

• Main cost factors: design time and effort, type of used
components (processors, memory, I/Os), technology
(board-based, system-on-chip, type of manufacturing
processes), testing time, power consumption.

• Non-recurring engineering (NRE) costs (design cost
and prototypes development) are becoming very high,
and because of that:

It is difficult to come out with low quantity products.

Implementation platforms are introduced, which are
used for products of similar type.

Cost constraints

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

36L. Bisdounis

• Reliability constraints:
Reliability is the probability of an embedded system working
correctly provided that it was working at t = 0.
Even perfectly designed systems can fail if the operation
assumptions (workload, possible errors) turn out to be
wrong. So, we have to be very carefully when define the
operation assumptions for a specific application in a given
environment.

• Safety constraints: embedded systems are often used in life
critical applications (automotive electronics, nuclear plants,
medical applications, defence applications etc.).

• Security constraints: embedded systems for communication
applications must often support confidentiality and authenticity.

• In order to guarantee the above constraints during the design,
exhaustive verification of the certain properties of the designed
system must be performed, as well as synthesis and design
based on automatic design tools.

Reliability and safety/security constraints

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

37L. Bisdounis

• Time-to-market constraints: in highly competitive
markets, it is critical to catch the market window: a
short delay may have catastrophic financial
consequences, even if the quality of the product
is excellent.

• Development time has to be reduced and some
ways to achieve that are:

Efficient design methodologies.

Efficient design tools.

Reuse of previously designed and verified parts
(hardware and software).

Use of existing hardware-software prototyping
platforms.

Design team understanding both software and
hardware.

Time-to-market constraints

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

38L. Bisdounis

The wall between
hardware and
software must
be torn down !

HWSW

Co-design is the concurrent design of hardware and software
components of a digital system.

Classic design

Co-design

What is hardware-software co-design ?

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

39L. Bisdounis

• Specification and modeling (co-specification,
functional co-simulation).

• High-level co-synthesis:
Architecture selection.
Components allocation
(processing elements, storing elements
and communication elements).
Tasks hardware-software mapping.
Scheduling of the several tasks.

• Low-level co-synthesis:
Hardware synthesis.
Software compilation and code
generation.
Interface synthesis.

• Integration, simulation, prototyping,
fabrication.

• All steps are supported by CAD tools.

Specification, modeling and
functional simulation

Architecture selection
(components allocation)

Hardware
synthesis

Software
compilation

Prototyping development
and testing

System fabrication

Hardware-software
mapping and sceduling

Hardware-software
integration & co-simulation

Interface
synthesis

Hardware-software co-design flow

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

40L. Bisdounis

• The difficulties in designing embedded systems are due to the fact that such
systems has high complexity, are dedicated towards a certain application, and
must be efficient in what concerns:

Run-time.
Power consumption.
Code-size (low memory requirements).
Cost (minimization of hardware resources).
Development time (time to market).
Size and weight.

• In order to achieve all the above, embedded systems have to be highly optimized.

• Both hardware and software aspects have to be considered
simultaneously (co-design) in order to achieve:

A good solution by balancing hardware
& software resources (flexibility).

Exploration of more design alternatives.

Design of systems-on-chip (optimized complex systems).

Difficulties in hardware-software co-design

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

41L. Bisdounis

• System-on-chip is an integrated circuit that implements most or all
of the functions of a complete electronic system, which solves an
embedded application.

• It is a heterogeneous system: may include hardware and software
parts, control and data-processing functionality, digital and analog
parts etc.

• Contains more than a single processor: memory modules, custom
circuitry, I/O peripherals, A/D or D/A converters etc.

What is a System-on-Chip (SoC) ?

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

42L. Bisdounis

A typical System-on-Chip

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

43L. Bisdounis

• Programmable processor cores:

Algorithms and protocols become increasingly complex, and
this makes their implementation in hardware difficult.

Modern processors are fast as a result of their sophisticated
design.

Upgrading the software implementation is easy (flexibility).

• Custom hardware is still quite useful:

High performance for time-critical task.

Low energy consumption.

Components of a typical System-on-Chip (cont’d)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

44L. Bisdounis

Example: SoC structure for the implementation of a typical wireless
telecommunication application.

Typical System-on-Chip example

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

45L. Bisdounis

• System-on-chips now are technologically possible: today’s chips can contain up
to 100 million transistors (according to the Moores Law, approximately every 18
months the number of transistors on a single chip doubles).

• Higher performance: fast data transfer compared to board designs.

• Lower energy consumption: multi-component designs need additional drivers
and interfaces for inter-component and inter-board connections.

• Reduced size: components connected on a PCB can now be integrated onto
a single chip.

• Lower cost.

• Increased reliability and design security.

Why do we need System-on-Chips ?

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

46L. Bisdounis

• Increased system complexity mainly due to the heterogeneity
(analog along with digital parts, processors along with custom
hardware, different memory types etc.), and due to the integrated
nature.

• This creates problems to the design phase (expertise in different
design areas is needed and the integration is a quite demanding
task), and to the technology (different processes have to be
incorporated onto a single die).

• Traditional hardware design methodologies do not work.

• Increased verification requirements.

• Design productivity vs. time-to-market pressure.

• Solutions to overcome complexity, low design productivity
and time-to-market pressure is to use advanced SoC design
methodologies and tools and mainly to re-use IP (Intellectual
Property) blocks in SoC designs.

Problems with System-on-Chip design

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

47L. Bisdounis

• IP-based design is the process of composing a new system by reusing
existing components.

• Possible IP blocks to be used:
Microprocessors (ARM, MIPS, PowerPC, SPARC etc.)
Interfaces (USB, PCI, UART etc.)
Encoder and decoders (JPEG, MPEG, Viterbi etc.)
Memories (SRAM, Flash etc.)
Microcontrollers (HC11 etc.)
DSPs (TI, Oak etc.)
Transformers (FFT, IFFT etc.)
Networking blocks (Ethernet, ATM etc.)
Encryption blocks (DES, AES etc.).

• The increasing need of SoCs is forcing design houses and vendors to
develop high-quality IP blocks (a new industry has been developed !).

IP-based System-on-Chip design

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

48L. Bisdounis

IP-based System-on-Chip design (cont’d)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

49L. Bisdounis

20
06

20
04

20
02

20
00

19
98

19
96

19
94

19
92

19
90

19
88

19
86

19
84

19
82

200

400

600

800

1000

1200

G
at

es
 p

er
 d

ay

10% re -use

50% re -use

SoC

System-on-Chip design productivity and cost

12.5 M
1200
~ 520
~ 8.5 K€
~ 4.5 M€
~ 4 M€
~ 8.5 M€

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

50L. Bisdounis

• How to specify an IP block for a reuse library: functionality, timing
information, interface properties, achieved speed, power consumption
etc.

• Much effort has to be allocated for:

Specification, simulation, estimation and exploration.

Integration (interfaces definition and implementation).

Verification and testing for many operating conditions
and inputs.

Main issues in IP block design

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

51L. Bisdounis

Reusability
Flexibility

Integration effort

Predictability
Performance, Cost

Supplier effort

• Hard IP blocks:
Fully designed, placed and
routed by the supplier. It is
offered as a completely
validated layout with definite
timing characteristics and
offers fast integration but
low flexibility.

• Firm IP blocks:
Technology-mapped gate-
level netlist and offers flexibility
during place and route, but
with lower predictability.

• Soft IP blocks:
Synthesizable RTL or
behavioral descriptions.
Require much effort for
integration/verification, but
offers maximal flexibility.

Types of IP blocks

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

52L. Bisdounis

System-on-Chip design flow

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

53L. Bisdounis

• Flexible architecture to implement the digital part of the physical layer
functionality of two wireless LAN standards (5 GHz band): HIPERLAN/2,
IEEE 802.11a.

• Implements the operations of CL and DLC of the HIPERLAN/2 and the
lower-MAC layer of the IEEE 802.11a standard.

• Contains two embedded microprocessors:

ARM946E-S for the implementation of the high layers of the
HIPERLAN/2 standard.

ARM7TDMI for the implementation of the lower-MAC layer of the
HIPERLAN/2 standard and for controlling the baseband modem
(transmitter/receiver) of the system.

• Also, includes a MAC hardware accelerator (custom block) that
implements critical functionality of the MAC layer of the IEEE 802.11a.

• Various peripherals: test and debug controller, power controller, Ethernet
and PCI interfaces, SDRAM controller, DMA controller, UARTs.

Example: Wireless LAN System-on-Chip

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

54L. Bisdounis

Example: Wireless LAN System-on-Chip (cont’d)

Primary bus

DMA
Controller

SDRAM & FLASH
Controller

Bus Bridge

Timers

Interrupt
Controller

Debug
Controller

ETHERNET
Interface

UART

PCI
Controller

ETHERNET
ControllerSDRAM

ARM 946ES
core with

16KB Cache
Memory

ARM 7TDMI
core SRAM Baseband

Modem

MAC Hardware
Accelerator

(IEEE 802.11a)

To analog
subsystemUART

Dual-port
SRAM

FLASH

PCI
Interface

Secondary bus

Watchdog

Power
Management

MAC/PHY
Interface

(HIPERLAN/2)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

55L. Bisdounis

Example: Wireless LAN System-on-Chip (cont’d)

Fabrication

Design

EASY
TEST CHIP

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

56L. Bisdounis

• Prototyping platforms are used after the simulation (or as an alternative to the
simulation) in order to prototype the SoC design into an FPGA-based board,
before its fabrication.

• Main characteristics of prototyping platforms:

Offer an accurate representation of the design since they are actual
implementations and not just simulations.

Faster than simulations: they can reproduce a problem after several seconds
of execution, while in HDL simulation environments things are much slower.

However, they are not exact replicas of the final SoC, and they cannot run
at the same frequency with the real silicon SoC.

The design can be mapped relatively quickly (hours or days).

Debugging support is usually included.

However, tasks such as design partitioning (to the available FPGAs), clock tree
routing, bus handling and memory mapping are complex and difficult.

Can be expensive for large designs, and sometimes they can lead to resource
bottleneck (a group have to wait for another group to finish using the platform).

Prototyping platforms

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

57L. Bisdounis

Example: ARM integrator platform

Logic
module

Core
module

ARM

System
board

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

58L. Bisdounis

• Two ARM7TDMI core modules (one implementing the upper layers of the protocol and the
second controlling the baseband modem and implementing the lower MAC protocol layer).

• Two logic modules with XILINX Virtex E 2000 FPGAs implementing the baseband modem
functionality. The average FPGA utilization was 87%.

Wireless LAN System-on-Chip prototyping

RF board
IF board

Bottom Logic Module

A to D and D to A
conversion

board
Core Modules

Top Logic Module

ARM Integrator Motherboard

Antenna

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

59L. Bisdounis

• Custom SoC designs have very high cost, making them practical only when we
have production of a very large number of chips (millions).

• IC devices with embedded reconfigurable devices (also called hardware-software
design platforms) have quite less cost, providing developers with an alternative
solution to custom SoCs and standard processors with external peripherals.

• Hardware-software design platform is a stable SoC architecture for a target
application or family of applications that is based on a combination of a
programmable CPU and a reconfigurable array of data-path units.

• It can be extended and customized relatively fast and easy.

• The use of such platforms increases the productivity and the success probability,
and reduces the design time.

• Derivative designs (implementing similar applications) can be easily created by
using software or hardware modifications.

• Diverse applications each requires a different platform (it is difficult to use the same
platform for a telecom application where the control functionality is dominant and for
a multimedia application where the data-processing tasks are dominant).

IC devices with embedded reconfigurable resources

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

60L. Bisdounis

Hardware-software design platforms concept

Predesigned and preverified
IP blocks catalog Hardware-software design platform

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

61L. Bisdounis

• Triscend A7S is a 32-bit
reconfigurable system-on-chip.

• Combines onto a single chip:

A 32-bit ARM7TDMI
embedded processor core.

A flexible Configurable System
Logic (CSL) matrix.

A robust memory subsystem.

A high-performance custom
internal bus.

Other system peripheral
functions.

• Altera Excalibur platform is
similar and combines an ARM9
with a PLD device.

Hardware-software design platforms examples

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

62L. Bisdounis

• MorphoSys platform
contains a Tiny RISC
processor that is a 4-stage
pipeline, MIPS-like RISC
machine with 16 32-bit
registers, 32-bit ALU/shift
unit and on-chip data cache
memory

• The reconfigurable array
consists of an 8x8 matrix of
Reconfigurable Cells (RC).

• Each RC comprises an
ALU-Multiplier, a shift unit,
input multiplexers, and a
register file with five 16-bit
registers.

University of California at Irvine

It is also available as autonomous IP
block (embedded reconfigurable core)
with programmable capabilities that can
be embedded in several SoCs and ASICs.

Hardware-software design platforms examples (cont’d)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

63L. Bisdounis

picoChip platform consists
of configurable array of
processors (picoArray)
and peripherals (external
microprocessor interface,
external memory interface,
interfaces allowing multiple
arrays to be connected
together).

Hardware-software design platforms examples (cont’d)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

64L. Bisdounis

The array contains
322 elements; 308
processors (16-bit
architecture with 3-
way LIW and local
memory) and 14
co-processors, all
connected by
programmable
interconnect
modules.

Hardware-software design platforms examples (cont’d)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

65L. Bisdounis

• The flexible nature of the
picoArray technology
allows the implementation
of several communications
standards (IEEE 802.11 -
wireless LAN, IEEE802.16
- outdoor wireless).

• The physical layer is
implemented on the
arrays, while the MAC
layer of the standards is
implemented on a
PowerPC external
processor.

• An encryption engine
implementing basic
standards is also
available.

Hardware-software design platforms examples (cont’d)

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

66L. Bisdounis

Conclusions

• Embedded systems are dedicated and application-specific, contains at least one
programmable component, requires continuous interaction with the environment
in real time and must meet several constraints.

• This nature of today’s embedded systems faces developers and engineers with
new problems when it comes to specifying, simulating, designing and optimising
such complex systems.

• Implementations are typically comprised of general purpose or application-
specific programmable components, dedicated processing components,
communication and memory modules.

• The design of embedded systems is driven by several constraints: performance,
power consumption, size and weight, cost, safety and security, reliability, time to
market.

• Optimization involves the simultaneous consideration of these incomparable and
often competing objectives.

• As a consequence, much design effort and advanced CAD tools are necessary
in order to handle the complexity of today’s embedded systems & applications.

Open Technical Lecture:
Embedded systems & applications and system-on-chip design

67L. Bisdounis

• With the current technology and in the context of increasingly complex
applications and strong market pressure, system-on-chip is a natural
approach for several embedded applications.

• Programmable components provide the necessary flexibility and custom
hardware is needed for time-critical tasks implementation and for low power
consumption.

• The real bottleneck in SoC design is productivity.

• Solutions are the IP-based design (blocks reuse), and the improvement of
existing design methodologies and tools.

• Prototyping platforms are used after the co-simulation (or as an alternative to
the simulation) in order to prototype and test the SoC design into an FPGA-
based board, before its fabrication.

• As alternatives to FPGAs and custom SoCs, the designers today can use IC
devices with embedded reconfigurable resources (hardware-software design
platforms) as well as embedded reconfigurable cores.

Conclusions (cont’d)

	Embedded systems & applications and system-on-chip design

